# Copyright 2014-2020 by Christopher C. Little.
# This file is part of Abydos.
#
# Abydos is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Abydos is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with Abydos. If not, see <http://www.gnu.org/licenses/>.
"""abydos.distance._smith_waterman.
Smith-Waterman score
"""
from typing import Any, Callable, Optional, cast
from numpy import float_ as np_float
from numpy import zeros as np_zeros
from ._needleman_wunsch import NeedlemanWunsch
__all__ = ['SmithWaterman']
[docs]
class SmithWaterman(NeedlemanWunsch):
"""Smith-Waterman score.
The Smith-Waterman score :cite:`Smith:1981` is a standard edit distance
measure, differing from Needleman-Wunsch in that it focuses on local
alignment and disallows negative scores.
.. versionadded:: 0.3.6
"""
def __init__(
self,
gap_cost: float = 1.0,
sim_func: Optional[Callable[[str, str], float]] = None,
**kwargs: Any
) -> None:
"""Initialize SmithWaterman instance.
Parameters
----------
gap_cost : float
The cost of an alignment gap (1 by default)
sim_func : function
A function that returns the similarity of two characters (identity
similarity by default)
**kwargs
Arbitrary keyword arguments
.. versionadded:: 0.4.0
"""
super(SmithWaterman, self).__init__(**kwargs)
self._gap_cost = gap_cost
self._sim_func = cast(
Callable[[str, str], float],
NeedlemanWunsch.sim_matrix if sim_func is None else sim_func,
) # type: Callable[[str, str], float]
[docs]
def sim_score(self, src: str, tar: str) -> float:
"""Return the Smith-Waterman score of two strings.
Parameters
----------
src : str
Source string for comparison
tar : str
Target string for comparison
Returns
-------
float
Smith-Waterman score
Examples
--------
>>> cmp = SmithWaterman()
>>> cmp.sim_score('cat', 'hat')
2.0
>>> cmp.sim_score('Niall', 'Neil')
1.0
>>> cmp.sim_score('aluminum', 'Catalan')
0.0
>>> cmp.sim_score('ATCG', 'TAGC')
1.0
.. versionadded:: 0.1.0
.. versionchanged:: 0.3.6
Encapsulated in class
"""
d_mat = np_zeros((len(src) + 1, len(tar) + 1), dtype=np_float)
for i in range(1, len(src) + 1):
for j in range(1, len(tar) + 1):
match = d_mat[i - 1, j - 1] + self._sim_func(
src[i - 1], tar[j - 1]
)
delete = d_mat[i - 1, j] - self._gap_cost
insert = d_mat[i, j - 1] - self._gap_cost
d_mat[i, j] = max(0, match, delete, insert)
return cast(float, d_mat[d_mat.shape[0] - 1, d_mat.shape[1] - 1])
[docs]
def sim(self, src: str, tar: str) -> float:
"""Return the normalized Smith-Waterman score of two strings.
Parameters
----------
src : str
Source string for comparison
tar : str
Target string for comparison
Returns
-------
float
Normalized Smith-Waterman score
Examples
--------
>>> cmp = SmithWaterman()
>>> cmp.sim('cat', 'hat')
0.6666666666666667
>>> cmp.sim('Niall', 'Neil')
0.22360679774997896
>>> round(cmp.sim('aluminum', 'Catalan'), 12)
0.0
>>> cmp.sim('cat', 'hat')
0.6666666666666667
.. versionadded:: 0.4.1
"""
if src == tar:
return 1.0
return max(0.0, self.sim_score(src, tar)) / (
self.sim_score(src, src) ** 0.5 * self.sim_score(tar, tar) ** 0.5
)
if __name__ == '__main__':
import doctest
doctest.testmod()