Expected Degree SequenceΒΆ

Random graph from given degree sequence.

Out:

Degree histogram
degree (#nodes) ****
 0 ( 0)
 1 ( 0)
 2 ( 0)
 3 ( 0)
 4 ( 0)
 5 ( 0)
 6 ( 0)
 7 ( 0)
 8 ( 0)
 9 ( 0)
10 ( 0)
11 ( 0)
12 ( 0)
13 ( 0)
14 ( 0)
15 ( 0)
16 ( 0)
17 ( 0)
18 ( 0)
19 ( 0)
20 ( 0)
21 ( 0)
22 ( 0)
23 ( 0)
24 ( 0)
25 ( 0)
26 ( 0)
27 ( 0)
28 ( 0)
29 ( 0)
30 ( 0)
31 ( 0)
32 ( 0)
33 ( 0)
34 ( 0)
35 ( 3) ***
36 ( 5) *****
37 ( 5) *****
38 ( 6) ******
39 ( 6) ******
40 ( 9) *********
41 (17) *****************
42 ( 9) *********
43 (18) ******************
44 (11) ***********
45 (21) *********************
46 (29) *****************************
47 (36) ************************************
48 (18) ******************
49 (33) *********************************
50 (30) ******************************
51 (32) ********************************
52 (29) *****************************
53 (30) ******************************
54 (26) **************************
55 (22) **********************
56 (12) ************
57 (19) *******************
58 (16) ****************
59 (12) ************
60 (12) ************
61 ( 8) ********
62 ( 6) ******
63 (10) **********
64 ( 3) ***
65 ( 3) ***
66 ( 0)
67 ( 1) *
68 ( 2) **
69 ( 0)
70 ( 0)
71 ( 0)
72 ( 1) *

# Author: Aric Hagberg (hagberg@lanl.gov)

#    Copyright (C) 2006-2019 by
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    All rights reserved.
#    BSD license.

import networkx as nx
from networkx.generators.degree_seq import expected_degree_graph

# make a random graph of 500 nodes with expected degrees of 50
n = 500  # n nodes
p = 0.1
w = [p * n for i in range(n)]  # w = p*n for all nodes
G = expected_degree_graph(w)  # configuration model
print("Degree histogram")
print("degree (#nodes) ****")
dh = nx.degree_histogram(G)
for i, d in enumerate(dh):
    print("%2s (%2s) %s" % (i, d, '*'*d))

Total running time of the script: ( 0 minutes 0.035 seconds)

Gallery generated by Sphinx-Gallery