 |
My Project
debian-1:4.1.1-p2+ds-4build2
|
Go to the source code of this file.
◆ PLURAL_INTERNAL_DECLARATIONS
#define PLURAL_INTERNAL_DECLARATIONS |
Definition at line 1 of file nc.cc.
◆ Approx_Step()
ideal Approx_Step |
( |
ideal |
L | ) |
|
Ann: ???
Definition at line 250 of file nc.cc.
254 int flag, flagcnt=0, syzcnt=0;
260 ideal trickyQuotient;
268 poly *var = (poly *)
omAlloc0((
N+1)*
sizeof(poly));
275 ideal h2, s_h2, s_h3;
278 for (
i=1;
i<=
N;
i++ )
286 for (
i=1;
i<=
N;
i++ )
290 for (
j=0;
j< idI;
j++ )
317 if (orig_ring != syz_ring)
333 Print(
".proceeding with the variable %d\n",
i);
342 PrintS(
"...computing Syz");
346 if (orig_ring != syz_ring)
351 if (s_h3->m[
j] !=
NULL)
360 s_h3->rank -= syzcomp;
378 PrintS(
"the input is a two--sided ideal");
383 Print(
"..computing Intersect of %d modules\n",syzcnt);
◆ idPrepareStd()
static ideal idPrepareStd |
( |
ideal |
T, |
|
|
ideal |
s, |
|
|
int |
k |
|
) |
| |
|
static |
Definition at line 200 of file nc.cc.
206 PrintS(
"ideals of diff. size!!!");
◆ twostd()
Compute two-sided GB:
Definition at line 18 of file nc.cc.
30 for(
int i = 0;
i <
s;
i++)
32 const poly
p = J->m[
i];
42 for (
int j = 1;
j <= rN;
j++)
68 Print(
"Reducing q[j = %d]: ",
j);
98 PrintS(
"NF(J/currRing->qideal)=> q: ");
int idElem(const ideal F)
count non-zero elements
ring rAssure_SyzComp(const ring r, BOOLEAN complete)
#define idDelete(H)
delete an ideal
ideal idrCopyR_NoSort(ideal id, ring src_r, ring dest_r)
#define MATELEM(mat, i, j)
void rChangeCurrRing(ring r)
ideal idMultSect(resolvente arg, int length, GbVariant alg)
ideal idrMoveR_NoSort(ideal &id, ring src_r, ring dest_r)
static poly pp_Mult_mm(poly p, poly m, const ring r)
const CanonicalForm CFMap CFMap & N
static BOOLEAN p_LmDivisibleBy(poly a, poly b, const ring r)
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent @Note: VarOffset encodes the position in p->exp
ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
static long p_MinComp(poly p, ring lmRing, ring tailRing)
void id_Delete(ideal *h, ring r)
deletes an ideal/module/matrix
static ideal idPrepareStd(ideal T, ideal s, int k)
long id_RankFreeModule(ideal s, ring lmRing, ring tailRing)
return the maximal component number found in any polynomial in s
void PrintS(const char *s)
void idSkipZeroes(ideal ide)
gives an ideal/module the minimal possible size
matrix id_Module2Matrix(ideal mod, const ring R)
void p_Write(poly p, ring lmRing, ring tailRing)
static poly nc_ReduceSpoly(const poly p1, poly p2, const ring r)
poly kNF(ideal F, ideal Q, poly p, int syzComp, int lazyReduce)
void p_Shift(poly *p, int i, const ring r)
shifts components of the vector p by i
void rDelete(ring r)
unconditionally deletes fields in r
static void p_Delete(poly *p, const ring r)
static int si_max(const int a, const int b)
#define pSetmComp(p)
TODO:
void rSetSyzComp(int k, const ring r)
ideal idInit(int idsize, int rank)
initialise an ideal / module
static void p_Setm(poly p, const ring r)
static BOOLEAN p_IsConstant(const poly p, const ring r)
#define idSimpleAdd(A, B)
const CanonicalForm int s
#define pCopy(p)
return a copy of the poly
#define SI_RESTORE_OPT1(A)
ideal kStd(ideal F, ideal Q, tHomog h, intvec **w, intvec *hilb, int syzComp, int newIdeal, intvec *vw, s_poly_proc_t sp)