
surf version 1.0.1

Stephan Endrass <endrass@mathematik.uni-mainz.de> May 28, 2000

The aim was to have a tool to visualize some real algebraic geometry: plane algebraic curves given as zero locus of

a polynomial in two variables, algebraic surfaces given as zero locus of a polynomial in three variables, hyperplane

sections of surfaces: algebraic space curves given as zero locus of two polynomials in three variables: a polynomial

of arbitrary degree (the surface) and a linear polynomial (the hyperplane), and lines on surfaces given by two

points on a surface. The algorithms should be stable enough not to be confused by curve/surface singularities in

codimension greater than one and the degree of the surface or curve. This has been achieved quite a bit. We

have drawn curves of degree up to 30 and surfaces of degree up to 20 successfully. However, there are examples of

curves/surfaces of lower degree where surf fails to produce perfect images. This happens especially if the equation

of the curve/surface is not reduced. Best results are achieved using reduced equations. On the other hand, surf

displays the Fermat-curves accurately for degree up to 98.

Contents

1 Overview 3

1.1 Acknowledgements . 3

1.2 Copyright . 3

1.3 How to get surf . 3

1.4 System requirements . 3

1.5 Starting surf . 4

1.6 Scripts versus graphical user interface . 4

1.7 Scripts . 4

1.8 Output . 4

1.9 Sample scripts . 5

1.10 surf and make . 5

1.11 Oddities, bugs and bug reports . 6

2 Introduction to surf 's command language 6

2.1 Data types . 6

2.2 Operators . 7

2.3 Mathematical functions . 7

2.4 String functions . 7

2.5 Polynomial functions . 8

2.6 First examples . 8

2.7 Conditional statements . 9

3 Features 9

3.1 Plane curves . 9

mailto:endrass@mathematik.uni-mainz.de

CONTENTS 2

3.2 Surfaces . 10

3.3 Hyperplane sections . 11

3.4 Multiple curves/surfaces . 11

3.5 Graphs and isolines . 12

3.6 Interactive positioning . 13

3.7 Preview . 13

3.8 Anti aliasing surfaces . 13

3.9 Animations . 13

3.10 Stereo pictures . 14

3.11 Black & white images . 15

3.11.1 Dithering with blue noise . 15

3.11.2 Dithering with ordered dither . 15

3.11.3 Hybrid methods . 15

3.11.4 The black & white problem . 16

3.12 Algorithms . 16

3.13 Output . 16

4 List of all reserved words 17

4.1 Reserved words corresponding to the main window . 17

4.1.1 Examples . 18

4.2 Reserved words corresponding to the position window . 18

4.2.1 Examples . 19

4.3 Reserved words corresponding to the display window . 19

4.3.1 Examples . 20

4.4 Reserved words corresponding to the light window . 20

4.4.1 Examples . 22

4.5 Reserved words corresponding to the clip window . 22

4.5.1 Examples . 22

4.6 Reserved words corresponding to the dither window . 23

4.6.1 Examples . 23

4.7 Reserved words corresponding to the save color image window 24

4.7.1 Examples . 24

4.8 Reserved words corresponding to the save dithered image window 24

4.8.1 Examples . 24

4.9 Reserved words corresponding to the numeric window . 25

4.9.1 Examples . 25

4.10 Reserved words corresponding to the curve window . 25

1. Overview 3

4.10.1 Examples . 25

1 Overview

1.1 Acknowledgements

I thank Prof. W. Barth (University Erlangen) for (en)forcing me to start this project. Hans Hülf, Rüdiger
Örtel and Kai Schneider have spent lots of time on coding parts of surf . Some of the code has been copied
from other places:

� Writing SUN raster�les and XWD �les has been copied from Michael L. Mauldin's Fuzzy PixMap
(fbm) library version 1.2.

� Writing a TIFF �le has been copied from John Cristy's Image Magick version 3.0.

� The octree color reduction algorithm is copied from Ian Ashdown's article Octree Color Quantization

in the C/C++ Users Journal Vol. 13, Number 3, pp. 31-43.

We thank all these people who made their code free so that we could use it.

1.2 Copyright

surf is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your option)
any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

1.3 How to get surf

surf is available via http/ftp at the surf home page http://surf.sourceforge.net .

1.4 System requirements

To compile surf , the following software is needed:

� GNU gcc/g++ version 2.7.x or higher (any ISO C++ compiler should work..),

� make,

� GNU �ex version 2.5 or higher (minor versions should work also, but lex does not su�ce),

� Berkeley yacc (GNU bison should work also),

� GTK+ version 1.2.0 or later (only required if you want to compile surf with GUI support),

� POSIX threads (If you have Linux make sure you use glibc2),

� GNU MP (gmp) version 2 or later,

Warning: Be prepared, the memory consumption of surf is about

http://surf.sourceforge.net

1. Overview 4

� 15 MB for a 1000x1000 pixel image,

� 60 MB for a 2000x2000 pixel image and

� 130 MB for a 3000x3000 pixel image (gobble!!).

1.5 Starting surf

surf is started by typing surf on the command line. Optional arguments are �no-gui (or -n) for starting
surf without graphical user interface, �exec (or -x) to immediately execute the �rst passed script �le and -
when using surf with GUI - �progress-dialog which tells surf to use a progress dialog instead of a status
bar, �auto-resize which forces the image windows to get automatically resized to the size of the image,
and the usual GTK+ options. �help prints out the usage information:

surf -n | --no-gui FILE...

surf [GTK-OPTIONS] [-x | --exec] [--progress-dialog]

[--auto-resize] [FILE]...

surf --help

1.6 Scripts versus graphical user interface

surf is designed to visualize algebraic curves and surfaces. This can be done either by writing scripts in
surf's command language and executing them interactively or from another program (for example make), or
by using surf 's graphical user interface. By using scripts one can draw series of pictures where each picture
consists of several surfaces/curves at a high resolution.

1.7 Scripts

Scripts in surf's command language are stored in �les with the su�x .pic. These �les consist of descriptions
of curves and/or surfaces and some commands. They can be invoked in two ways:

� by loading a script and pressing the button execute script or

� by starting surf with the name of a script �le from the command line. If you compiled/started surf

without GUI support, it automatically starts interpreting the script. Otherwise you have to press the
execute script button.

1.8 Output

surf calculates both color and black & white images. Color images can currently be stored in the following
formats:

� XWD,

� SUN raster�le,

� PPM and

� JPEG

Additionally one can choose a convenient colormap among

1. Overview 5

� Netscape 216 color cube (8 bit),

� optimized by an octree algorithm (8 bit) and

� true color (24 bit).

Black & white images can be stored in the following formats:

� Postscript,

� Encapsulated Postscript,

� TIFF,

� XBM,

� PGM and

� PBM.

1.9 Sample scripts

You will �nd some sample scripts together with surf 's distribution. They are stored in the examples

directory.

1.10 surf and make

surf can be invoked from make. This comes in quite handy when visualising a series of curves/surfaces.
Suppose there are script �les s1.pic, s2.pic, ... , sn.pic which create during execution images s1.xwd, s2.xwd,
... , sn.xwd. If for example gif is the desired image �le format, an appropriate make�le might look like:

#!/bin/bash

#

SURF = surf

RM = /bin/rm -f

CONVERT = convert

#

OBJS = s1.gif s2.gif sn.gif

#

.SUFFIXES: .pic .gif

#

.pic.gif:

${SURF} -n $<

${CONVERT} $*.xwd $*.gif

${RM} $*.xwd

#

dummy:

@echo ' '

@echo 'usage:'

@echo ' '

@echo ' print this message:'

@echo ' make'

@echo ' '

2. Introduction to surf 's command language 6

@echo ' build images:'

@echo ' make all'

@echo ' '

@echo ' remove images:'

@echo ' make clean'

@echo ' '

#

all: ${OBJS}

#

clean:

${RM} *.gif

#

end of makefile

Here convert is the Image Magick image format converter.

1.11 Oddities, bugs and bug reports

In case you �nd any bug, please use the excellent Bug Tracking System on surf 's project page at Sourceforge.

2 Introduction to surf 's command language

2.1 Data types

The language used in surf 's scripts is quite simple. It has got a (very restricted) C-like syntax and provides
the four data types

� int (integer),

� double (double precision �oat value),

� string (any ""-quoted string) and

� poly (any polynomial in x, y and z).

So a valid declaration/initialisation looks like:

� int a=3; or int a; a=3;

� double b=3.3; or double b; b=3.3;

� string c="test.xwd"; or string c; c="test.xwd";

� poly d=(x-3)�3-y�2+z; or poly d; d=(x-3)�3-y�2+z;

There is no comma separator like in C. Declaring a name twice results in an error. The scope of the name
begins at the point of its declaration and lasts until the end of the �le. There is no method of undeclaring a
name.

http://sourceforge.net/bugs/group_id=3275

2. Introduction to surf 's command language 7

2.2 Operators

The following arithmetic operators are implemented:

operator | meaning | valid data types

+ | binary plus | {int,double,poly}+{int,double,poly}

+ | concatenation | {string}+{string}

+ | unary plus | +{int,double,poly}

- | binary minus | {int,double,poly}-{int,double,poly}

- | unary minus | -{int,double,poly}

* | multiplication | {int,double,poly}*{int,double,poly}

/ | division | {int,double,poly}/{int,double}

% | remainder | {int}%{int}

^ | power | {int,double}^{int,double}

| | {poly}^{int}

() | brackets | ({int,double,poly})

= | equals | {poly}={int,double,poly}

| | {double}={int,double}

| | {int}={int}

| | {string}={string}

== | equal | {int,double}=={int,double}

!= | not equal | {int,double}!={int,double}

< | smaller than | {int,double}<{int,double}

<= | smaller or equal | {int,double}<={int,double}

> | greater than | {int,double}>{int,double}

>= | greater or equal | {int,double}>={int,double}

The precedence of operators copied from C.

2.3 Mathematical functions

There are some built-in math functions:

function | meaning | valid arguments | returns

sqrt | square root | sqrt({int,double}) | double

pow | power | pow({int},{int,double}) | double

| | pow({double},{int,double}) | double

sin | sinus | sin({int,double}) | double

cos | cosinus | cos({int,double}) | double

arcsin | arcus sinus | arcsin({int,double}) | double

arccos | arcus cosinus | arccos({int,double}) | double

tan | tangens | tan({int,double}) | double

arctan | arcus tangens | arctan({int,double}) | double

They take int and double as argument.

2.4 String functions

There are also two functions returning strings:

2. Introduction to surf 's command language 8

function | meaning | valid arguments | returns

--

itostr | int to string | itostr({int}) | string

itostrn | int to string | itostrn({int},{int}) | string of spec. length

itostr converts its argument to a string without blanks. For example itostr(31) returns "31". itostrn
allows to specify the length of the string. For example:

� itostrn(3,88) returns "088"

� itostrn(4,88) returns "0088"

2.5 Polynomial functions

Some functions work on polynomials:

function | meaning | valid arguments | returns

--

deg | degree | deg({poly}) | int

len | length | len({poly}) | int

diff | derivative | diff({poly},{x,y,z}) | poly

rotate | rotation | rotate({poly},{double} |

| | {xAxis,yAxis,zAxis}) | poly

hesse | hesse surface | hesse({poly}) | poly

This enables you to work out arbitrary polynomials.

2.6 First examples

Values can be passed to surf by setting global variables. The most important two global variables are curve
and surface, which should be set to the polynomial whose zero set should be visualized. So the shortest
e�ective script contains only three lines, for example:

� 1st example: draw the newton knot

clear_screen;

curve=y^2-x^2*(x+1);

draw_curve;

� 2nd example: draw a sphere

clear_screen;

surface=x^2+y^2+z^2-80;

draw_surface;

Both examples can be invoked by pressing the button execute script . The command draw_curve is somehow
equivalent to pressing the button draw curve. The command draw_surface is somehow equivalent to pressing
the button draw surface.

3. Features 9

2.7 Conditional statements

CAUTION: There are no for and no while statements. There is only the crude

if(INTEGER-EXPRESSION) goto LABEL;

which you might remember from your early BASIC sessions. Here INTEGER-EXPRESSION can be arbitrary
complicated as long as it results in an integer. LABEL is something like NAME: which has occurred before.
Consider the example

int i=0;

loop:

surface=x^2+y^2+z^2-(i+1.0)/2.0;

clear_screen;

draw_surface;

filename="sphere"+itostrn(2,i)+".ras";

save_color_image;

i=i+1;

if(i<50) goto loop;

which obviously draws �fty spheres of increasing radius and saves them into the SUN raster�les:

sphere00.ras ... sphere49.ras

There exist some more commands explained brie�y afterwards. C++ comments are welcome. Warning:

Check if your loop terminates!

3 Features

In this section most features of surf are explained. Many of these features can be invoked from the graphical
user interface. All features can be invoked through surf 's command language. Command language features
are only explained if not accessible through the GUI. For a complete reference to the command language,
have a look at the next section.

3.1 Plane curves

To draw a plane curve, enter the equation into surf 's text window preceded by curve= and followed by a
semicolon. Then press the button draw curve. Some seconds later the curve will show up in the window
titled color image. By default the curve is drawn inside the rectangle

-10.0 <= x,y <= 10.0

and is clipped at a circle with radius 10.0. The x-axis is horizontal pointing to the right, the y-axis is vertical
and points upwards. By default the image size is 200 x 200 pixels. The image size can be altered by setting
width and height in the main window.

The view can be altered in the position window : A di�erent origin can be speci�ed by setting origin x and
origin x . A rotation with center at (0,0) can be speci�ed by setting rotation about z-axis. The curve may be
scaled by setting scale factor x and scale factor y . The appearance of the curve can be altered in the curve

window .

3. Features 10

The clipping area can be speci�ed in the clip window . For a curve the only reasonable values are sphere and
none.

An arbitrary color can be given to the curve by setting curve red ,curve green and curve blue to appropriate
values in the curve window . The curve width can be set by changing curve width. A high value of curve
gamma sharpens the curve, whereas a low value blurs the curve.

3.2 Surfaces

To draw a surface, enter its equation into surf 's text window preceded by surface= and followed by a
semicolon. Then press the button draw surface. Some more seconds later the surface will appear. By
default, the surface is calculated inside the cube

-10.0 <= x,y,z <= 10.0

and clipped at a sphere of radius 10.0. The x-axis is horizontal pointing to the right, the y-axis is vertical
and points upwards. The z-axis points to you. The spectator is located at (0,0,25) by default.

Changing the view can be done by altering the settings in the position window . A di�erent origin may be
speci�ed by setting origin x , origin y and origin z . To rotate the surface one can set rotation about x-axis,
rotation about y-axis and rotation about z-axis to appropriate values. Rotation is performed on the following
order: y-axis, x-axis, z-axis. To scale the surface set scale factor x , scale factor y and scale factor z to
desired values. It is also possible to switch from central perspective to parallel perspective.

Illumination and color can be altered in the light window . The direction of the normal vector given by the
gradient of the surface equation de�nes one side of the surface which is regarded as outside. You can specify
a color for this side by setting surface red , surface green and surface blue. The other side of the surface
(inside) can be given a di�erent color by specifying inside red , inside green and inside blue.

Currently only the Phong illumination model is implemented. Therefore the intensity of the surface in one
point consists of four components which are calculated separately:

� ambient light,

� di�use light,

� re�ected light and

� transmitted light.

Ambient light is a constant which represents the light a point on the surface receives from the whole envi-
ronment (the sky, the �oor, the lawn ...) but not from the light sources. Di�use light is the light the point
receives from the light sources and which is re�ected equally in every possible direction. The amount of
di�use light is independent of the spectator position, it is proportional to the cosine of the angle between
the normal vector and the vector from the point to the light source. Re�ected light is the light from the
light sources which is re�ected specular from the surface point. Its amount is proportional to a power of
the cosine of the angle between the vector from the point to the spectator and the specular re�ection vector
from the light source. If a high power of the cosine is taken, the surface will appear shiny, whereas a low
power of the cosine lets the surface look rough. Therfore this power is labelled smoothness. Transmitted
light comes in if a surface is transparent. A constant called transparence speci�es the percentage of light
which passes through the surface. Algebraic surfaces are in�nitesimally thin. However our eye is not used to
such objects, so we pretend that our surfaces have a constant thickness. Specifying a positive thickness for
a transparent surface results in a loss of transparency in the places where the surface normal does not point
to the spectator.

3. Features 11

These four light components are added with weights ambient , di�use, re�ected and transmitted .

The number of light sources is limited to nine. For every light source, the position, the color and the intensity
can be speci�ed.

The clip window allows to specify a di�erent clipping area. Here the center and radius of the clipping area
may be speci�ed. Additionally a front and a back clipping plane may be speci�ed.

3.3 Hyperplane sections

To draw one or more hyperplane sections of an algebraic surface, just specify the hyperplane by setting
the global variable plane to its equation. The section is drawn when the command cut_with_plane is
interpreted. For example:

rot_x=0.3; // a nice rotation

rot_y=0.2;

surface=x^2*y^2+y^2*z^2+z^2*x^2-16*x*y*z;

clear_screen; // draw the steiner roman surface

draw_surface;

curve_red=0;

curve_green=255;

curve_blue=0;

curve_width=5;

curve_gamma=1.2;

plane=x+y+z; // draw a green hyperplane section

cut_with_plane;

plane=x+y+z+4.0; // draw another one

cut_with_plane;

The color of the hyperplane section can be set by specifying curve_red, curve_green and curve_blue. The
width of the section is altered by setting curve_width to any suitable value. A high value of curve_gamma
(eg. 10.0) makes the curve look very pixelized, whereas a small value (eg. 1.0) makes the section look
blurred.

3.4 Multiple curves/surfaces

Multiple curves can be drawn in script �les just by NOT clearing the screen. This works �ne for plane
curves. Just consider the following example:

do_background=yes;

clear_screen;

curve=y^2-x^2*(x-1);

draw_curve; // draw a cubic

do_background=no;

curve=x;

draw_curve; // draw y-axis

curve=y;

draw_curve; // draw y-axis

Not that every curve will be drawn just over all curves that have been draw so far.

3. Features 12

Multiple surfaces can be drawn by specifying up to 9 surfaces in the variables surface, surface2 ...
surface9. Additionally it is possible to draw on every surface any number of hyperplane sections.

rot_x=0.69; // a nice rotation

rot_y=0.35;

illumination=ambient_light + // specify illumination

diffuse_light + // model

reflected_light +

transmitted_light;

transparence=35; // set transparence for surface no 1

transparence2=35; // set transparence for surface no 2

surface=x^2+y^2+z^2-30; // first surface: a sphere

surface2_red=255; // second surface: a red steiner surface

surface2_green=0;

surface2_blue=0;

surface2=x^2*y^2+x^2*z^2+y^2*z^2-16*x*y*z;

clear_screen;

draw_surface; // draw the surface

curve_width=5;

curve_red=0;

curve_green=255;

curve_blue=0;

plane=x+y+z-6.0; // draw a green hyperplane section

surf_nr=1; // on the sphere

cut_with_plane;

curve_red=0;

curve_green=255;

curve_blue=255;

plane=x+y+z+4.0; // draw a turquoise hyperplane section

surf_nr=2; // on the steiner surface

cut_with_plane;

3.5 Graphs and isolines

Given a polynomial function f(x,y) and a set of levels z1, ... ,zn, surf can visualize the graph z=f(x,y)

and all isoline for the levels z1, ... ,zn as follows:

rot_x=-0.8;

clear_screen;

poly f=x^2+y^2; // graph of (x,y)->x^2+y^2

surface=z-f;

draw_surface; // draw the graph

curve_width=3; // width of isoline

plane=z-1;

cut_with_plane; // draw isoline f(x,y)=1

plane=z-2;

cut_with_plane; // draw isoline f(x,y)=2

plane=z-3;

cut_with_plane; // draw isoline f(x,y)=3

plane=z-4;

3. Features 13

cut_with_plane; // draw isoline f(x,y)=4

plane=z-5;

cut_with_plane; // draw isoline f(x,y)=5

plane=z-6;

cut_with_plane; // draw isoline f(x,y)=6

plane=z-7;

cut_with_plane; // draw isoline f(x,y)=7

plane=z-8;

cut_with_plane; // draw isoline f(x,y)=8

plane=z-9;

cut_with_plane; // draw isoline f(x,y)=9

If however your function f is not polynomial, try to expand calculate its Taylor series. Since the new root
algorithms work �ne with polynomials of degree up to 30, you might approximate f by its Taylor series. If
your function is piecewise de�ned, better use another program.

3.6 Interactive positioning

The position window provides an interface to adjust the curve/surface position. You can set the 9 buttons
into the three modes translate, rotate and scale.

3.7 Preview

If you try to draw a surface and give the equation to surf , the resulting image normally does not look nice
at all. You have to �nd the right scaling, rotation and so on. Often you want to see immediately what
happens if you change some value. But it simply takes surf too long to calculate one image. Here comes
the preview in. Setting the preview buttons in the main window to 3x3 has the e�ect that only every 9th
pixel is calculated, setting it to 9x9 only every 81st pixel is calculated. But one can still get an impression
of what the image looks like, AND computation is speeded up by the factor 9 resp. 81.

Up to two preview buttons can be pressed at one time. If for example 9x9 and 1x1 are pressed, then the
image will be calculated in three steps. First, every 81st pixel, after that every 9th pixel and �nally every
pixel will be calculated.

3.8 Anti aliasing surfaces

Especially in animations aliasing is very disturbing. Therefore if in the display window , antialiasing level is
set to a value n > 1, then in a second pass all pixels di�ering by a value of at least antialiasing threshold

from one of their neighbours are re�ned. Exactly n�2+1 intensity values are calculated. In most cases an
antialiasing level of 4 will remove aliasing.

3.9 Animations

On a nifty machine surf is fast enough to provide a real time animation of an algebraic curve of degree < 5.
For example

// --------------------------

// animation of a cubic curve

// --------------------------

3. Features 14

clear_screen;

double a=-10.0;

loop:

curve=y^2-(x^2-1)*(x-a);

clear_pixmap;

draw_curve;

a=a+0.1;

if(a <= 10.0) goto loop;

calculates some 200 curves. In a 200x200 window, surf shows me about �ve frames per second on a sparc
20. However, real time animations of algebraic surfaces are still beyond computation power (or do you call
a 200-processor-machine your own?). But you can calculate a series of images with surf and convert this
series of images to the movie format of your choice.

// --------------------------

// the 4-nodal cubic rotating

// --------------------------

width=200;

height=200; // set image size

double sf=0.3;

scale_x=sf;

scale_y=sf;

scale_z=sf; // set scaling

double Pi=2*arccos(0);

double w2=sqrt(2); // define some constants

poly p=1-z-w2*x;

poly q=1-z+w2*x;

poly r=1+z+w2*y;

poly s=1+z-w2*y; // define tetrahedral coordinates

poly cubic=4*(p^3+q^3+r^3+s^3)-(p+q+r+s)^3; // the cubic

int i=0;

loop:

surface=rotate(cubic,2*Pi/100*i,zAxis); // rotate the cubic

clear_screen;

draw_surface; // draw the cubic

filename="cubic"+itostrn(3,i)+".ras";

save_color_image; // save the image

i=i+1;

if(i < 100) goto loop; // repeat 100 times

Here some 100 SUN raster�les are created. Afterwards you could use some tool to convert these single images
to a movie.

3.10 Stereo pictures

Have you ever watched one of those �lms with that red and green glasses? surf tries to accomplish exactly
this e�ect when you set eye distance in the display window to a value greater than zero. The following
situation is simulated: The spectator is located at (0,0,spectator z) and the distance between his eyes is eye
distance. The surface will appear at the z-coordinate distance from screen. Furthermore it is possible to
adjust to speci�c red-green or red-blue glasses by setting left eye red value, right eye green value end right

eye blue value. In particular it is assumed that the right eye wears the red glass.

3. Features 15

3.11 Black & white images

If a color image of a surface/curve has been calculated, this image can be mapped to a black and white
image by pressing the button dither surface or dither curve. The second one is just designed for dithering
curves. The appearance of the black and white image can be altered/adjusted in several ways in the dither

window . Since the mapping itself is done by dithering, the dithering algorithm can be speci�ed. Currently
available are seven algorithms coming in three groups:

3.11.1 Dithering with blue noise

� Floyd-Steinberg �lter

� Jarvis, Judis and Ninke �lter

� Stucki �lter

All three �lters are based on the same idea of error distribution. Floyd Steinberg is the simplest one, whereas
Stucki di�ers from Jarvis only by its weights. They tend to produce disturbing patterns if they process large
areas of intensity near 0.5. Therefore one can let them proceed in a serpentine fashion, which reduces the
patterns. Nearly all patterns disappear if the weights are disturbed randomly. The algorithms are best for
use with low resolution printers, typically 300 dpi. Some (most?) 600 dpi laser printers do not like these
algorithms, since they do not like isolated pixels.

3.11.2 Dithering with ordered dither

� Clustered dot ordered dither

� Dispersed dot ordered dither

The clustered dot ordered dither is a fast method and produces satisfying results in combination with high
resolution printers (600 dpi and more). The second algorithm is for use with low resolution printers. Both
perform no error distribution. Depending on the printer resolution and the number of emulated gray levels,
one can choose the pattern size:

� 4 x 4 pixels: 16 gray levels,

� 8 x 8 pixels: 64 gray levels or

� 16 x 16 pixels: 256 gray levels.

3.11.3 Hybrid methods

� Knuth's dot di�usion

� Knuth's smooth dot di�usion

Both algorithms combine clustered dot ordered dither and error distribution. Depending on the printer
resolution on can choose the number of barons in a 8x8 matrix to be

� 1 for resolutions of 1200 dpi or above or

� 2 for resolutions of 600 dpi or above.

The barons are the bad guys in a matrix which get all the error left over from the good guys.

3. Features 16

3.11.4 The black & white problem

The surfaces on black and white images often don't look very impressive; often it is hard to detect the edges
of a surface. An algorithm called enhancing the edges avoids this drawback. This algorithm takes a value
alpha in [0,1] as input. Best results are achieved with alpha around 0.9.

The intensity of the background on the black and white image can be speci�ed by altering the value back-

ground to any value in [0.1]. Here 0 is black whereas 1 means white.

The tone scale adjustment maps intensity values between 0 and 0.1 to 0, values between 0.1 and 0.9 linear
to [0,1] and values between 0.9 and 1 to 1. This is used to enhance the contrast of an image. An additional
gamma correction can be also performed to correct the linearity of an output device.

By specifying pixel size one can correct the printer pixel size: A value of 50 means that the radius of a pixel
is exactly half the distance between two neighbouring pixels. A value of 100 says that the radius of a pixel
is exactly the distance between two neighbouring pixels.

3.12 Algorithms

The heart of surf is an algorithm which determines all roots of a polynomial in one variable. Currently you
can choose between seven methods in the numeric window . The �rst six methods use a chain of derivatives
to determine intervals where the polynomial has exactly one root. They di�er by the iteration method
which is used to �nd the roots in these intervals. Some of the iteration methods were just implemented out
of academic interest. However, they all work. The last method uses Rockwoods all roots algorithm: the
polynomial is converted into a bezier function and the roots of the bezier function are approximated by the
roots of the control polygon.

For curves/surfaces of degree less than ten, all methods work. When the degree gets higher, best results are
achieved by the bisection, the Newton and the bezier all roots method. At last, for a degree higher than
30 only the bisection methods seems to work (up to degree 50). If a curve has multiple components, the
bisection and the Newton method tend to produce the best results.

Moreover it is possible to specify a numerical precision epsilon which is used in all root �nders. Additionally
the maximal number of iterations of the iteration methods can be speci�ed.

3.13 Output

surf can store color images in one of several �le formats. In the save color image window you can choose
between

� XWD (X Window Dump),

� SUN raster�le,

� PPM (Portable PixMap) and

� JPEG.

Additionally the color space can be chosen among

� Netscape 216 color cube (8 bit),

� optimized by an octree algorithm (8 bit) and

� True color (24 bit).

4. List of all reserved words 17

The �rst colormap is just the 6x6x6 colormap Netscape uses. The second one results from an octree algorithm
which chooses the most used 216 colors among all colors of the image. Storing an image in True color results
in better quality, but bigger �le size.

surf can store black and white images in di�erent �le formats. We have implemented

� Postscript,

� EPS (Encapsulated Postscript),

� TIFF,

� XBM,

� PGM and

� PBM.

For postscript and encapsulated postscript also the resolution may be speci�ed among

� 75 dpi,

� 100 dpi,

� 150 dpi,

� 300 dpi,

� 600 dpi and

� 1200 dpi.

These settings may be chosen in the save dithered image window . When using postscript, the image will
(regardless its size) appear centred on the side (which is assumed to be a4).

4 List of all reserved words

A reserved word in surf 's language is either a command or a global variable. A command is invoked mostly
without parameters. Global variables are either constant or may be altered. The commands correspond to
pushbuttons of surf 's GUI, global variables correspond to other panel items.

4.1 Reserved words corresponding to the main window

res. word | type | description

--

clear_screen | command | erase the image

clear_pixmap | command | erase the image in memory (useful for

| | real-time-animations of algebraic curves)

draw_curve | command | draw the curve defined by the global

| | polynomial curve

draw_surface | command | draw the surfaces defined by the global

| | polynomials surface, surface2, ...

cut_with_plane | command | draw the hyperplane section defined

| | defined by the linear polynomial plane

4. List of all reserved words 18

dither_surface | command | convert color image to a dithered

| | black and white image

dither_curve | command | convert color image to a dithered

| | black and white image (for curves only)

save_color_image | command | save color image in file defined by the

| | global string filename

save_dithered_image | command | save dithered black and white image in

| | file defined by the global string filename

set_size | command | not needed any more (still there for

| | compatibility issues)

res. word | type | range | default | description

curve | poly | any | 0 | polynomial of curve

surface | poly | any | 0 | polynomial of surface

surface2 | poly | any | 0 | polynomial of surface2

... | ... | ... | ... | ...

surface9 | poly | any | 0 | polynomial of surface9

plane | poly | linear | 0 | equation of hyperplane

width | int | {64,...,3000} | 200 | width of surface image

height | int | {64,...,3000} | 200 | height of surface image

filename | string | any | "" | filename used in

| | | | save_color_image,

| | | | save_dithered_image

surf_nr | int | {1,...,9} | 1 | surface which is used

| | | | for cut_with_plane

4.1.1 Examples

width=400; // Set image width

height=300; // and height

surface=x^2+y^2+z^2-81; // Set global variable surface to a sphere

draw_surface; // Draw the sphere onto the screen

plane=x+y+z; // Choose a hyperplane

cut_with_plane; // Draw the hyperplane section

filename="sphere.ras";

save_color_image; // Save the color image in file sphere.xwd

dither_surface; // Perform dithering on the color image

filename="sphere.ps";

save_dithered_image; // Save the dithered image in sphere.ps

4.2 Reserved words corresponding to the position window

res. word | type | range | def. | description

origin_x | double |]-9999,9999[| 0 | \

origin_y | double |]-9999,9999[| 0 | > position of origin

origin_z | double |]-9999,9999[| 0 | /

spec_z | double |]0,9999[| 100 | spectator dist. from origin

rot_x | double |]-9999,9999[| 0 | rotation angle of surface

4. List of all reserved words 19

| | | | about the x-axis

rot_y | double |]-9999,9999[| 0 | rotation of surface

| | | | about the y-axis

rot_z | double |]-9999,9999[| 0 | rotation of surface

| | | | about the z-axis

scale_x | double |]-9999,9999[| 1 | ratio surface is scaled in

| | | | direction of the x-axis

scale_y | double |]-9999,9999[| 1 | ratio surface is scaled in

| | | | direction of the y-axis

scale_z | double |]-9999,9999[| 1 | ratio surface is scaled in

| | | | direction of the z-axis

perspective | int | {0,1} | 0 | perspective to use

parallel | int | 0 | 0 | constant

central | int | 1 | 1 | constant

first | int | {0,1,2} | 0 | first performed \

second | int | {0,1,2} | 1 | second performed > action

third | int | {0,1,2} | 2 | third performed /

translate | int | 0 | 0 | constant

rotate | int | 1 | 1 | constant

scale | int | 2 | 2 | constant

4.2.1 Examples

double Pi=2*arccos(0);

origin_x = -3;

origin_y = -4; // Set origin to point (-3,-4,2)

origin_z = 2;

spec_z = 25; // Spectator is now at (-3,-4,27)

rot_x = Pi/2; // Rotate 90 degrees about x-axis

rot_y = Pi/4; // Rotate 45 degrees about y-axis

rot_z = Pi; // Rotate 180 degrees about z-axis

scale_x = 1.0; // Don't scale in x-direction

scale_y = 1.5; // Shrink surface in y-direction

scale_z = 1/2; // Oversize surface in z-direction

first = rotate; // rotate first

second = scale; // then scale

third = translate; // then translate

4.3 Reserved words corresponding to the display window

res. word | type | range | def. | description

dither_colors | int | {yes,no} | yes | color dithering

dither_steps | double | [5,...,255] | 20.0 | steps of dithering

normalize | int | {yes,no} | no | normalize image

normalize_factor | double |]0,...,5] | 1.0 | multiply with

antialiasing | int | {1,..,8} | 1 | level of

| | | | antialiasing

antialiasing_threshold | double |]0,1[| 0.1 | threshold

antialiasing_radius | double | [0.5,...,2] | 2.0 | radius

4. List of all reserved words 20

depth_cueing | int | {yes,no} | no | use depth cueing

depth_value | double | [-1000,10[| -14.0 | depth of mist

stereo_eye | double | [-100,100] | 0.0 | eye distance

stereo_z | double | [-30,30] | 5.0 | dist. from screen

stereo_red | double | [0,1] | 1.0 | left eye red

stereo_green | double | [0,1] | 0.7 | right eye green

stereo_blue | double | [0,1] | 0.0 | right eye blue

4.3.1 Examples

dither_colors = yes; // perform color dithering

dither_steps = 60.0; // use soft dithering

normalize = yes;

normalize_factor = 1.5; // light up image

antialiasing = 4; // do 4 fold antialiasing

antialiasing_threshold = 0.05; // with a low threshold

antialiasing_radius = 1.5; // and a small radius

depth_cueing = yes; // perform depth cueing

depth_value = -11.0;// from -11 on everythin is dark

stereo_eye = 5.0; // make a red-blue image

stereo_z = 2.0; // object 2 units before screen

stereo_red = 1.0;

stereo_green = 0.0;

stereo_blue = 1.0;

4.4 Reserved words corresponding to the light window

res. word | cat. | range | def. | description

illumination | int | {0,..15} | 7 | illumination model

ambient_light | int | 1 | 1 | constant

diffuse_light | int | 2 | 2 | constant

reflected_light | int | 4 | 4 | constant

transmitted_light | int | 8 | 8 | constant

surface_red | int | {0,...,255} | 123 | \ outside

surface_green | int | {0,...,255} | 104 | > color of surface

surface_blue | int | {0,...,255} | 238 | / (medium slate blue)

inside_red | int | {0,...,255} | 230 | \ inside

inside_green | int | {0,...,255} | 180 | > color of surface

inside_blue | int | {0,...,255} | 30 | / (golden)

surface2_red | int | {0,...,255} | 123 | \ outside

surface2_green | int | {0,...,255} | 104 | > color of surface2

surface2_blue | int | {0,...,255} | 238 | / (medium slate blue)

inside2_red | int | {0,...,255} | 230 | \ inside

inside2_green | int | {0,...,255} | 180 | > color of surface2

inside2_blue | int | {0,...,255} | 30 | / (golden)

... | ... | ... | ... | ...

... | ... | ... | ... | ...

... | ... | ... | ... | ...

surface9_red | int | {0,...,255} | 123 | \ outside

4. List of all reserved words 21

surface9_green | int | {0,...,255} | 104 | > color of surface9

surface9_blue | int | {0,...,255} | 238 | / (medium slate blue)

inside9_red | int | {0,...,255} | 230 | \ inside

inside9_green | int | {0,...,255} | 180 | > color of surface9

inside9_blue | int | {0,...,255} | 30 | / (golden)

ambient | int | {0,...,100} | 35 | amount of ambient light

diffuse | int | {0,...,100} | 60 | diffuse reflected light

reflected | int | {0,...,100} | 60 | specular reflected light

transmitted | int | {0,...,100} | 60 | spec. transmitted light

smoothness | int | {0,...,100} | 13 | roughness of surface

transparency | int | {0,...,100} | 80 | transparency of surface

ambient2 | int | {0,...,100} | 35 | amount of ambient light

diffuse2 | int | {0,...,100} | 60 | diffuse reflected light

reflected2 | int | {0,...,100} | 60 | specular reflected light

transmitted2 | int | {0,...,100} | 60 | spec. transmitted light

smoothness2 | int | {0,...,100} | 13 | roughness of surface2

transparency2 | int | {0,...,100} | 80 | transparency of surface2

... | ... | ... | ... | ...

... | ... | ... | ... | ...

... | ... | ... | ... | ...

ambient9 | int | {0,...,100} | 35 | amount of ambient light

diffuse9 | int | {0,...,100} | 60 | diffuse reflected light

reflected9 | int | {0,...,100} | 60 | specular reflected light

transmitted9 | int | {0,...,100} | 60 | spec. transmitted light

smoothness9 | int | {0,...,100} | 13 | roughness of surface9

transparency9 | int | {0,...,100} | 80 | transparency of surface9

light1_x | double | [-9999,9999] | -100 | \

light1_y | double | [-9999,9999] | 100 | \ position and volume

light1_z | double | [-9999,9999] | 100 | / of the first light

light1_vol | int | {0,...,100} | 50 | / source

light1_red | int | {0,..,255} | 255 | \

light1_green | int | {0,..,255} | 255 | > color of first

light1_blue | int | {0,..,255} | 255 | / light source

light2_x | double | [-9999,9999] | 0 | \

light2_y | double | [-9999,9999] | 100 | \ position and volume

light2_z | double | [-9999,9999] | 100 | / of the second light

light2_vol | int | {0,...,100} | 0 | / source

light2_red | int | {0,..,255} | 255 | \

light2_green | int | {0,..,255} | 255 | > color of second

light2_blue | int | {0,..,255} | 255 | / light source

... | ... | ... | ... | ...

... | ... | ... | ... | ...

... | ... | ... | ... | ...

light9_x | double | [-9999,9999] | 100 | \

light9_y | double | [-9999,9999] | -100 | \ position and volume

light9_z | double | [-9999,9999] | 100 | / of the ninteh light

light9_vol | int | {0,...,100} | 0 | / source

light9_red | int | {0,..,255} | 255 | \

light9_green | int | {0,..,255} | 255 | > color of nineth

light9_blue | int | {0,..,255} | 255 | / light source

4. List of all reserved words 22

4.4.1 Examples

illumination = ambient_light

+ diffuse_light

+ reflected_light

+ transmitted_light; // Select illumination

surface_red = 205;

surface_green = 92;

surface_blue = 92; // Select indian red for surface outside

inside_red = surface_red;

inside_green = surface_green;

inside_blue = surface_blue; // Select indian red for surface inside

ambient = 10; // 40% ambient light

diffuse = 60; // 60% diffuse light

reflected = 60; // 60% reflected light

transmitted = 70; // 60% reflected light

smoothness = 50; // make surface shiny

transparence = 90; // very transparent

thickness = 20; // but also very thick

light2_x = 100;

light2_y = 0;

light2_z = 200;

light2_volume = 100; // turn on light no. 2 red at (100,0,200)

light2_red = 255;

light2_green = 0;

light2_blue = 0;

4.5 Reserved words corresponding to the clip window

reserved word | cat. | range | def. | description

clip | int | {0,...,5} | 0 | clipping area

ball | int | 0 | 0 | constant

cylinder_xaxis | int | 1 | 1 | constant

cylinder_yaxis | int | 2 | 2 | constant

cylinder_zaxis | int | 3 | 3 | constant

cube | int | 4 | 4 | constant

none | int | 5 | 5 | constant

clip_front | double | [-9999,9999] | 10 | \ additional clip region

clip_back | double | [-9999,9999] | -10 | /

radius | double |]0,9999] | 10 | radius of clip region

center_x | double | [-9999,9999] | 0 | \

center_x | double | [-9999,9999] | 0 | > center of clip region

center_x | double | [-9999,9999] | 0 | /

4.5.1 Examples

clip = cube;

radius = 7;

center_x = -3; // Set clipping area to cube with center at

4. List of all reserved words 23

center_y = 2; // (-3,2,1) and edge length 14

center_z = 1;

clip_front = 4; // Clip off points with z > 4

clip_back = -10; // Clip off points with z > -10

4.6 Reserved words corresponding to the dither window

reserved word | cat. | range | def. | description

dithering_method | int | {0,...,6} | 1 | dithering method

floyd_steinberg_filter | int | 0 | 0 | constant

jarvis_judis_ninke_filter | int | 1 | 1 | constant

stucki_filter | int | 2 | 2 | constant

clustered_dot_ordered_dither | int | 3 | 3 | constant

dispersed_dot_ordered_dither | int | 4 | 4 | constant

dot_diffusion | int | 5 | 5 | constant

smooth_dot_diffusion | int | 6 | 6 | constant

reserved word | cat. | range | def. | description

serpentine_raster | int | {yes,no} | yes | use of serpentine raster

random_weights | int | {yes,no} | yes | use of random weights

weight | double | [0,1] | 0.5 | amount of random weights

barons | int | {0,1} | 1 | number of barons

one_baron | int | 0 | 0 | constant

two_baron | int | 1 | 1 | constant

pattern_size | int | {0,1,2} | 1 | size of dithering tile

pattern_4x4 | int | 0 | 0 | constant

pattern_8x8 | int | 1 | 1 | constant

pattern_16x16 | int | 2 | 2 | constant

enhance_edges | int | {yes,no} | yes | enhance edges of b w image

alpha | double | [0,1] | 0.9 | filter coefficient used in

| | | | for enhancing the edges

background | double | [0,1] | 1.0 | background intensity of

| | | | b w image

tone_scale_adjustment | int | {yes,no} | yes | perform tone scale adjust.

gamma | double |]0,oo[| 1.3 | gamma-correction

pixel_size | int |]50,100] | 73 | correction for printers

| | | | that produce too fat pixels

4.6.1 Examples

dithering_method = stucki_filter; // select stucki filter

serpentine_raster = yes; // turn on serpentine raster

random_weights = yes; // turn on random weights

weight = 0.5; // select 50% weights

enhance_edges = yes; // turn on enhancing edges

alpha = 0.8; // edges less visible than default

background = 0.5; // gray background for b w image

tone_scale_adjustment = yes; // perform tone scale adjustment

4. List of all reserved words 24

gamma = 1.5; // more gamma-correction than default

dithering_method = dispersed_dot; // select dispersed dot ordered dither

pattern_size = pattern_16x16; // select a 16x16-tile

dithering_method = dot_diffusion; // select dot-diffusion

barons = two_barons; // select a 2-barons tile

4.7 Reserved words corresponding to the save color image window

reserved word | type | range | def. | description

color_file_format | int | {0,1} | 1 | file format

xwd | int | 0 | 0 | constant

sun | int | 1 | 1 | constant

color_file_colormap | int | {0,1,2} | 0 | colormap type

netscape | int | 0 | 0 | constant

optimized | int | 1 | 1 | constant

truecolor | int | 2 | 2 | constant

4.7.1 Examples

color_file_format = xwd;

color_file_colormap = truecolor; // format is 24 bit XWD

4.8 Reserved words corresponding to the save dithered image window

reserved word | type | range | def. | description

resolution | int | {0,...,5} | 3 | (printer) resolution

res_75dpi | int | 0 | 0 | constant

res_100dpi | int | 1 | 1 | constant

res_150dpi | int | 2 | 2 | constant

res_300dpi | int | 3 | 3 | constant

res_600dpi | int | 4 | 4 | constant

res_1200dpi | int | 5 | 5 | constant

dithered_file_format | int | {0,...,4} | 2 | file format

postscript | int | 0 | 0 | constant

encapsulated | int | 1 | 1 | constant

xbm | int | 2 | 2 | constant

tiff | int | 3 | 3 | constant

bm2font | int | 4 | 4 | constant

4.8.1 Examples

resolution = res_300dpi; // select 300 dpi

dithered_file_format = bm2font; // TeX pk

4. List of all reserved words 25

4.9 Reserved words corresponding to the numeric window

reserved word | cat. | range | def. | description

root_finder | int | {0,...,6} | 6 | used root finder

d_chain_bisection | int | 0 | 0 | constant

d_chain_regula_falsi | int | 1 | 1 | constant

d_chain_pegasus | int | 2 | 2 | constant

d_chain_illinois | int | 3 | 3 | constant

d_chain_anderson_bjoerck | int | 4 | 4 | constant

d_chain_newton | int | 5 | 5 | constant

bezier_all_roots | int | 6 | 6 | constant

epsilon | double |]0,1[| 1e-4 | precision of

| | | | root finder

iterations | int | [1,2000] | 200 | max. number of

| | | | iterations

4.9.1 Examples

root_finder = d_chain_bisection; // Slow, but safe

epsilon = 1.0e-7; // Work very precise

iterations = 80; // max. 80 iterations on each root

4.10 Reserved words corresponding to the curve window

reserved word | type | range | def. | description

curve_red | int | {0,...,255} | 255 | \

curve_green | int | {0,...,255} | 255 | > curve color

curve_blue | int | {0,...,255} | 255 | /

curve_width | double | {1,2,...} | 1 | width of curve

curve_gamma | double |]0,oo[| 4.0 |

4.10.1 Examples

curve_red =0;

curve_green=255;

curve_blue =0; // make the curve look green

curve_width=6.0; // thick curve

curve_gamma=2.0; // intensity increases slower

	Overview
	Acknowledgements
	Copyright
	How to get surf
	System requirements
	Starting surf
	Scripts versus graphical user interface
	Scripts
	Output
	Sample scripts
	surf and make
	Oddities, bugs and bug reports

	Introduction to surf's command language
	Data types
	Operators
	Mathematical functions
	String functions
	Polynomial functions
	First examples
	Conditional statements

	Features
	Plane curves
	Surfaces
	Hyperplane sections
	Multiple curves/surfaces
	Graphs and isolines
	Interactive positioning
	Preview
	Anti aliasing surfaces
	Animations
	Stereo pictures
	Black & white images
	Dithering with blue noise
	Dithering with ordered dither
	Hybrid methods
	The black & white problem

	Algorithms
	Output

	List of all reserved words
	Reserved words corresponding to the main window
	Examples

	Reserved words corresponding to the position window
	Examples

	Reserved words corresponding to the display window
	Examples

	Reserved words corresponding to the light window
	Examples

	Reserved words corresponding to the clip window
	Examples

	Reserved words corresponding to the dither window
	Examples

	Reserved words corresponding to the save color image window
	Examples

	Reserved words corresponding to the save dithered image window
	Examples

	Reserved words corresponding to the numeric window
	Examples

	Reserved words corresponding to the curve window
	Examples

