Last update: May 6, 202/

ProbDist

A Software Library of Probability Distributions
and Goodness-of-Fit Statistics in ANSI C

Pierre L’Ecuyer and Richard Simard

Département d’Informatique et de Recherche Opérationnelle
Université de Montréal

This document describes a set of basic software utilities, implemented in ANSI C, de-
veloped in our simulation laboratory. It is part of a larger set of tools used for stochastic
simulation and for testing random number generators. It provides procedures to compute
densities, mass functions, distribution functions and their inverses, and reliability functions,
for various continuous and discrete probability laws. It also offers a mechanism for collecting
observational data and computing elementary statistics on it, and tools for performing and
reporting different types of univariate goodness-of-fit tests.

Copyright

Copyright (©) 20022015 by Pierre L’Ecuyer, Université de Montréal.
Web address: http://www.iro.umontreal.ca/~lecuyer/
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permit-
ted without a fee for private, research, academic, or other non-commercial purposes. Any use
of this software in a commercial environment requires a written licence from the copyright
owner.

Any changes made to this package must be clearly identified as such.
In scientific publications which used this software, a reference to it would be appreciated.
Redistributions of source code must retain this copyright notice and the following disclaimer:

THIS PACKAGE IS PROVIDED “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Contents

Copyright i
fmass. 1
fdist 5
wdist . . .o 15
fhar . . . e 16
Anv . o . 20
gofs . L 24
gofW . e 29
statcoll . . . L L 35

i

fmass

This module provides functions for computing the probability terms (or mass function)
for some standard discrete distributions.

For certain distributions (e.g., the Poisson, binomial, and negative binomial), one can
either recompute a probability term each time it is needed, or precompute tables that contain
the probability terms and the distribution function, and then use these tables whenever a
value is needed. The latter trades memory for speed and is recommended especially if the
distribution function has to be computed several times for the same parameter(s). We
describe how this works for the Poisson distribution. Things work similarly for the other
distributions.

To compute a single Poisson probability from scratch, simply use fmass_PoissonTerml.
To precompute tables, one must first call fmass_CreatePoisson with the desired parame-
ter value A of the Poisson distribution. This will precompute and store the non-negligible
probability terms f(s) (those that exceed fmass_Epsilon) in a table, and the cumulative
distribution function

F(z)=7 f(s)

for the corresponding values of x in a second table. In fact, that second table will contain
F(z) when F(x) <1/2 and 1 — F(z) when F(z) > 1/2. These tables are kept in a structure
of type fmass_INFO which can be deleted by calling fmass_DeletePoisson. Any value of the
mass, distribution, complementary distribution, or inverse distribution function can be ob-
tained from this structure by calling fmass_Poisson2, fdist_Poisson2, fbar_Poisson2, or
finv_Poisson2, respectively. As a rule of thumb, creating tables and using fdist_Poisson2
is faster than just using fdist_Poissonl as soon as two or three calls are made to this func-
tion, unless A is large. (If A is very large, the tables are not created because they would
take too much space, and the functions with suffix _Poisson2 automatically call those with
suffix _Poisson1 instead.)

Types

struct fmass_INFO_T;

typedef struct fmass_INFO_T *fmass_INFO;

Type of structure used to store precomputed discrete distributions.

The Poisson distribution

double fmass_PoissonTerml (double lambda, long s);

Computes and returns the value of the Poisson probability

fs) = X)

s!

for A = lambda. If one has to call this function several times with the same A, where) is not
too large, then it is more efficient to use fmass_PoissonTerm2. Restriction: A > 0.

fmass_INFO fmass_CreatePoisson (double lambda);

Creates and returns a structure that contains the mass and distribution functions for the Pois-
son distribution with parameter lambda = A, which are computed and stored in dynamic
arrays inside that structure. Such a structure is needed for calling fmass_PoissonTerm2,
fdist_Poisson2, fbar_Poisson2, or finv_Poisson2. It can be deleted by calling the pro-
cedure fmass_DeletePoisson. Restriction: A > 0.

void fmass_DeletePoisson (fmass_INFO W) ;

Deletes the structure W created previously by fmass_CreatePoisson.

double fmass_PoissonTerm2 (fmass_INFO W, long s);

Returns the Poisson probability (1) from the structure W, which must have been created previ-
ously by calling fmass_CreatePoisson with the desired A.

The binomial distribution

double fmass_BinomialTerm3 (long n, double p, long s);

Computes and returns the binomial term

n!

f(s) = <Z>ps(1 S =

sl(n —s)

(2)

where p is an arbitrary real number. In the case where 0 < p < 1, the returned value is a
probability term for the binomial distribution. Restriction: 0 < s < n.

double fmass_BinomialTerml (long n, double p, double q, long s);

Computes and returns the binomial term

1= (M) = e)

s sl(n — s)

where p and ¢ are arbitrary real numbers. In the case where 0 < p < 1 and ¢ = 1 — p, the
returned value is a probability term for the binomial distribution. Restriction: 0 < s < n.

double fmass_BinomialTerm4 (long n, double p, double p2, long s);

Computes and returns the binomial term

n S n—s n! S n—s
s) = 1— =—F—p°(1— , 4
16 = (M) =) 0
where p and po are real numbers in [0,1]. In the case where py = p, the returned value is a
probability term for the binomial distribution. If ps is small, this function is more precise than
fmass_BinomialTerml. Restriction: 0 < s < n.

fmass_INFO fmass_CreateBinomial (long n, double p, double q);

Creates and returns a structure that contains binomial terms (3) for 0 < s < n, and the cor-
responding cumulative function. If 0 < p = 1 — ¢ < 1, these are the probabilities and the
distribution function of a binomial random variable. The values are computed and stored in dy-
namic arrays. Such a structure is needed for calling fmass_BinomialTerm2, fdist_Binomial2,
fbar_Binomial2, or finv_Binomial2. It can be deleted by calling fmass_DeleteBinomial.
This function is more general than the binomial probability distribution as it computes the
binomial terms when p + ¢ # 1, and even when p or ¢ are negative. However in this case,
the cumulative terms will be meaningless and only the mass terms fmass_BinomialTerm2 are
computed.

void fmass_DeleteBinomial (fmass_INFO W);

Deletes the structure W created previously by fmass_CreateBinomial.

double fmass_BinomialTerm2 (fmass_INFO W, long s);

Returns the value of the binomial term (3) from the structure W, which must have been created
previously by fmass_CreateBinomial with the desired parameters.

The negative binomial distribution

double fmass_NegaBinTerml (long n, double p, long s);

Computes and returns the value of the negative binomial probability term

S

s = (" raa (5)

which can be interpreted as the probability of having s failures before the nth success in a
sequence of independent Bernoulli trials with success probability p. Restrictions: n > 0, 0 <
p<1,and s > 0.

fmass_INFO fmass_CreateNegaBin (long n, double p);

Creates and returns a structure that contains the probability terms (5) and the distribution
functions for the negative binomial distribution with parameter n and p. Such a structure is
needed for calling fmass_NegaBinTerm2, fdist_NegaBin2, fbar_NegaBin2, or finv_NegaBin2.
It can be deleted by calling fmass_DeleteNegaBin. Restrictions: 0 < p <1 and n > 0.

void fmass_DeleteNegaBin (fmass_INFO W);

Deletes the structure W created previously by fmass_CreateNegaBin.

double fmass_NegaBinTerm2 (fmass_INFO W, long s);

Returns the negative binomial probability (5) from the structure W, which must have been
created previously by calling fmass_CreateNegaBin with the desired parameters.

fdist

This module provides procedures to compute (or approximate) the distribution functions
of several standard types of random variables and of certain goodness-of-fit test statistics.
Recall that the distribution function of a continuous random variable X with density f is

Fo)=PIX <a= [flapds (6
while that of a discrete random variable X with mass function f over the set of integers is
Flo)=PIX <al= Y fa). (7)

All the procedures in this module return F'(x) for some probability distribution.

Most distributions are implemented only in standardized form here, i.e., with the location
parameter set to 0 and the scale parameter set to 1. To shift the distribution by xy and
rescale by ¢, it suffices to replace x by (z — x¢)/c in the argument when calling the function.

For some of the discrete distributions, the value of F'(x) can be simply recovered from
a table that would have been previously constructed; see the module fmass for the details.
This permits one to avoid recomputing the sums.

#include <testu01l/gdef.h>
#include <testul0l/fmass.h>

Continuous distributions

double fdist_Unif (double x);

Returns z for z € [0,1], returns 0 for z < 0, and returns 1 for > 1. This is the uniform
distribution function over [0, 1].

double fdist_Expon (double x);

Returns
Fx)y=1—-¢€" (8)

for x > 0, and 0 for x < 0. This is the standard exponential distribution [19] with mean 1.

double fdist_Weibull (double alpha, double x);

Returns

«@

F(z)=1-e"", (9)

for x > 0, and 0 for # < 0. This is the standard Weibull distribution function [19] with shape
parameter . Restriction: o > 0.

double fdist_ExtremeValue (double x);

Returns

x

F(z)=e° ", (10)

the standard extreme value distribution function [20].

double fdist_Logistic (double x);

Returns
Flo) = - :ez - % (1 + tanh (g)) (11)

the standard logistic distribution function [20].

double fdist_Pareto (double c, double x);

Returns 1

F(z)=1- o (12)
for x > 1 and 0 for x < 1. This is the standard Pareto distribution function [19]. Restriction:
c>0.

double fdist_Normall (double x);

Returns an approximation of ®(x), where ® is the standard normal distribution function, with
mean 0 and variance 1. Uses the approximation given in [21, page 90]. This distribution is less
precise than fdist_Normal?2 in the lower tail, as it will not compute probabilities smaller than
DBL_EPSILON.

double fdist_Normal2 (double x);

Returns an approximation of ®(z), where @ is the standard normal distribution function, with
mean 0 and variance 1. Uses the Chebyshev approximation proposed in [36], which gives 15
decimals of precision nearly everywhere. This function is 1.5 times slower than fdist_Normall.

#ifdef HAVE_ERF

double fdist_Normal3 (double x);

#endif
Returns an approximation of ®(z), where ® is the standard normal distribution function, with
mean 0 and variance 1. Uses the erf function from the standard Unix C library. The macro
HAVE_ERF from mylib/gdef must be defined. On some machines, this function is twice as fast
as fdist_Normall.

double fdist_Normal4 (double x);

Returns an approximation of ®(z), where @ is the standard normal distribution function, with
mean 0 and variance 1. Uses Marsaglia’s et al [31] fast method with tables lookup. Returns 15
decimal digits of precision. This function is as fast as fdist_Normall (no more no less).

6

double fdist_BiNormall (double x, double y, double rho, int ndig);

Returns the value u of the standard bivariate normal distribution, given by

Al
Uy = —— e “dydx 13
2 1—p2 —o00 J —00 ()
o a;2—2pxy+y2’

2(1—p?)

where p = rho is the correlation between x and y, and ndig is the number of decimal digits of
accuracy. The code was translated from the Fortran program written by T. G. Donnelly [11]
and copyrighted by the ACM (see http://www.acm.org/publications/policies/copyright_
policy). The absolute error is expected to be smaller than 10~¢, where d = ndig. Restriction:
ndig < 15.

double fdist_BiNormal2 (double x, double y, double rho);

Returns the value of the standard bivariate normal distribution as defined in (13) above. It was
translated directly from the Matlab code written by Alan Genz and available from his web page
(the code is copyrighted by Alan Genz, and is included in this package with the kind permission
of its author). The algorithm, described in [16], is a modified form of the algorithm proposed
n [12]. The program’s accuracy results in an absolute error less than 5- 10716,

double fdist_LogNormal (double mu, double sigma, double x);
Returns the lognormal distribution function, defined by [19]

Flz)=® <ln(x)_”> (14)

g

for x > 0 and 0 for < 0, where ® is the standard normal distribution. Restriction: o > 0.

double fdist_JohnsonSB (double alpha, double beta, double a, double b,
double x);

Returns the Johnson JSB distribution function [25]:

F(x)—q)<a+/31n<z:z>), (15)

where @ is the standard normal distribution. Restrictions: 8 >0, a < b, and a <z < b.

double fdist_JohnsonSU (double alpha, double beta, double x);
Returns the Johnson JSU distribution function [25]:

F($):<I>(oz+ﬁln(x+ $2—|—1>) (16)

where ® is the standard normal distribution. Restriction: g > 0.

double fdist_ChiSquarel (long k, double x);

Returns an approximation of the chi-square distribution function with k& degrees of freedom,
which is a special case of the gamma distribution, with shape parameter k/2 and scale parameter
1/2. Uses the approximation given in [21, p.116] for £ < 1000, and the normal approximation
for k£ > 1000. Gives no more than 4 decimals of precision for & > 1000.

double fdist_ChiSquare2 (long k, int d, double x);

Returns an approximation of the chi-square distribution function with k£ degrees of freedom, by
calling fdist_Gamma (k/2, d, x/2). The function will do its best to return d decimals digits
of precision (but there is no guarantee). For k not too large (e.g., k& < 1000), d gives a good
idea of the precision attained. Restrictions: k£ > 0 and 0 < d < 15.

double fdist_Studentl (long n, double x);

Returns the approximation of [21, p.96] for the Student-t distribution function with n degrees
of freedom, whose density is

1+—
n

1@) = T2y mn

Gives at least 12 decimals of precision for n < 103, and at least 10 decimals for 103 < n < 10°.
Restriction: n > 0.

—(n+1)/2
F<<n+1>/2>[] o o0 < < 0. (17)

double fdist_Student2 (long n, int d, double x);

Returns an approximation of the Student-t distribution function with n degrees of freedom, with
density (17). Uses the relationship (see [19])
I, n/(n + x? for x < 0,
Lo nj2(2”/(n+ %)) for x >0,

where I, , is the beta distribution function with parameters p and ¢ (also called the incomplete
beta ratio) defined in (21), which is approximated by calling fdist_Beta. The function tries
to return d decimals digits of precision (but there is no guarantee). Restrictions: n > 0 and
0<d<15.

double fdist_Gamma (double a, int d, double x);

Returns an approximation, based on [4], of the gamma distribution function with parameter a,

whose density is

xa—le—x
I'(a) ’

fz) = (19)

for x > 0, where I is the gamma function, defined by

INa) = /0OQ 2 e dx. (20)

The function tries to return d decimals digits of precision. For a not too large (e.g., a < 1000),
d gives a good idea of the precision attained. For a > 100000, uses a normal approximation
given in [32]. Restrictions: a > 0 and 0 < d < 15.

double fdist_Beta (double p, double g, int d, double x);

Returns an approximation of

(1 —)t
B(p,q)

the beta distribution function with parameters p and ¢, evaluated at = € [0, 1], where B(p, q) is
the beta function defined by
I'(p)I'(q)

Lip+q)’

where I'(x) is the Gamma function defined in (20). For max(p, ¢) < 1000, use a recurrence rela-
tion in p and ¢ for fdist_Beta, given in [14, 15]. Else, if min(p, ¢) < 30, use an approximation
due to Bol’shev [27]. Otherwise, use a normal approximation [32]. The function tries to return
d decimals digits of precision. For d < 13, when the normal approximation is not used, d gives
a good idea of the precision attained. Restrictions: p > 0, ¢ > 0, z € [0,1] and 0 < d < 15.

F(z) =1Ip4(z) = /0 dt, (21)

B(p,q) = (22)

double fdist_BetaSymmetric (double p, double x);

Returns an approximation of the symmetrical beta distribution function F'(z) with parameters
p = q as defined in (21). Uses four different hypergeometric series (for the four cases z close to
0and p <1, z close to 0 and p > 1, x close to 1/2 and p < 1, and x close to 1/2 and p > 1) to
compute F'(z). For p > 100000, uses a normal approximation given in [32]. Restrictions: p > 0
and z € [0,1].

double fdist_KSPlus (long n, double x);
Returns p = P[D;" < x|, where

Df = sup [Fy(s) = F(s)]" (23)
—00<s<00
is the positive Kolmogorov-Smirnov statistic for a sample of size n whose empirical distribution
function is Fj,, under the hypothesis that the observations follow a continuous distribution
function F. (Recall that z* represents max(0, x), the positive part of z.) The statistic

Dy = sup [F(s) = Eu(s)]" (24)

—00<s<00

has the same distribution as D;". Procedures for computing these statistics are availables in
module gofs. The distribution function of D, can be approximated via the following expres-
sions:

[n(1-z)]) i—1 . n—i
+ < — _ n L _
P[DT < z] 1—=x ; (l> (n—i—x) (1 - x) (25)
[nz] n j j j n—j—1
= :BZ(])(”—:B> <1—n—|—x> (26)
7=0
2
~ 1 e [1—2“3 <1—x<1— 2ne)
3 3
2 (1 19n2® 2n2%z? 9

Formula (25) and (26) can be found in [13], equations (2.1.12) and (2.1.16), while (27) can be
found in [9]. Formula (26) contains less terms than (25) when = < 0.5, but becomes numerically
unstable as nz increases. The approximation (27) is simpler to compute and excellent when nx
is large. Our implementation uses (26) when nz < 6.5, (25) when nz > 6.5 and n < 4000, and
(27) when nx > 6.5 and n > 4000.

double fdist_KS1 (long n, double x);

Returns v = P[D,, < z] where D,, = max{D;’, D, } is the two-sided Kolmogorov-Smirnov
statistic [7] for a sample of size n, and D;} and D, are defined in (23) and (24). This method
uses Pomeranz’s recursion formula [8, 34] for n < 400, which return at least 13 decimal digits
of precision. It uses the Pelz-Good asymptotic expansion [33] in the central part of the range
for n > 400 and returns at least 6 decimal digits of precision everywhere for 400 < n < 4000.
For n > 4000, it returns at least 2 decimal digits of precision for all w > 10722, and at least 5
decimal digits of precision for all & > 10~7. For a given n, the precision increases as z increases.
This method is much faster than fdist_KS2 for moderate or large n.

double fdist_KS2 (long n, double x);

Another version of the Kolmogorov-Smirnov distribution P[D,, < z], using Durbin’s matrix
formula [13]. It is astronomically slow for large n. According to its authors [30], it should
return at least 7 decimal digits of precision.

double fdist_KSPlusJumpOne (long n, double a, double x);

Similar to fdist_KSPlus but for the case where the distribution function F' has a jump of
size a at a given point xg, is zero at the left of zg, and is continuous at the right of zg. The
Kolmogorov-Smirnov statistic is defined in that case as

Di(@)= sup (Bu(F () —) = L (i/n = F(V)) (28)

10

where V(1),..., V() are the observations sorted by increasing order. The procedure returns an
approximation of P[D;}(a) < x| computed via

T B T S (1 1 % [(SRS

T (Y (i) 0

The current implementation uses formula (30) when n(x 4+ a) < 6.5 and + a < 0.5, and uses
(29) when nx > 6.5 or x + a > 0.5. Restriction: 0 < a < 1.

double fdist_CramerMises (long n, double x);

Returns an approximation of P[W? < x|, where W2 is the Cramér von Mises statistic (see [38,
39, 2, 22]) defined in (43), for a sample of independent uniforms over (0,1). The approximation
is based on the distribution function of W? = lim,_ e W,%, which has the following series
expansion derived by Anderson and Darling [2]:

POV <) = %2(—1)3’(‘2/ AT e { U i ()

where K, is the modified Bessel function of the second kind. To correct for the deviation
between P(W?2 < x) and P(W? < z), we add a correction in 1/n, obtained empirically by
simulation. For n = 10, 20, 40, the error is less than 0.002, 0.001, and 0.0005, respectively,
while for n > 100 it is less than 0.0005. For n — 0o, we estimate that the procedure returns at
least 6 decimal digits of precision. For n = 1, the procedure computes the exact distribution:

PWE<xz)=2x—1/12 for 1/12<x < 1/3.

double fdist_WatsonG (long n, double x);

Returns an approximation of P[G, < z], where G,, is the Watson statistic defined in (44),
for a sample of independent uniforms over (0,1). The approximation is computed in a similar
way as for fdist_CramerMises. To implement this procedure, a table of the values of g(x) =
lim,, oo P[G,, < x| and of its derivative was first computed by numerical integration. For
x < 1.5, the procedure uses this table with cubic spline interpolation. For z > 1.5, it uses
the empirical curve g(z) = 1 — e'9720% A correction of order 1/,/n, obtained empirically from
107 simulation runs with n = 256 and also implemented as an interpolation table with an
exponential tail, is then added. The absolute error is estimated to be less than 0.01, 0.005,
0.002, 0.0008, 0.0005, 0.0005, 0.0005 for n = 16, 32, 64, 128, 256, 512, 1024, respectively. For
the trivial case n = 1, always returns 0.5.

double fdist_WatsonU (long n, double x);

Returns P[U? < z], where U? is the Watson statistic defined in (46) in the limit when n — oo,
for a sample of independent uniforms over (0, 1). Only this limiting distribution (when n — c0)

11

is implemented. It is given by
= ; 22
P(U?<z) = 1+42) (~1ye@m? (32)
j=1

This sum converges extremely fast except for small x, where alternating successive terms give
rise to numerical instability. But with the Poisson summation formula [24], the sum can be

transformed to
[2 & ,
=0

which can be used for small . The current implementation uses (32) for z > 0.15, and (33) for
x < 0.15. The absolute difference between the returned value and P[U2 < z] is estimated to be
less than 0.01 for n > 8. For the trivial case n = 1, always returns 0.5.

double fdist_AndersonDarling (long n, double x);

Returns F,(r) = P[A2 < x|, where A2 is the Anderson-Darling statistic [2] defined in (47),
for a sample of independent uniforms over (0,1). The approximation is computed similarly
as for fdist_CramerMises. To implement this procedure, an interpolation table of the values
of F(x) = lim,_,o P[A%2 <] was first computed by numerical integration. Then a linear
correction in 1/n, obtained by simulation, was added. For = < 5, the procedure approximates
F,(z) = P[A2 < z] by interpolation. For 5 < z < 10, it uses the empirical curve F,(z) ~
1 — e 1062056 _ =1.062=1.03 /pp " \which includes the empirical correction in 1/n. The absolute
error on Fy(x) is estimated to be less than 0.001 for n > 6 except far in the tails. For n = 2,
3, 4, 6, it is estimated to be less than 0.04, 0.01, 0.005, 0.002, respectively. In the lower tail
(x < 0.2), the approximation (3.6) of Sinclair and Spurr [37]

1

0.03287 (2.018+0.2029/x)
1+ exp (1.784 +0.9936 + Q05287 _ 02)

Fx)=1-

is used without correction for finite n. In the far upper tail (z > 10), the approximation (3.5)
of Sinclair and Spurr [37]
1.732 exp(—x)

N
is used without correction for finite n. For n = 1, the procedure returns the exact value,

Fi(x) =+v1—4e=*~! for x > In(4) — 1.

F(z)=1

double fdist_AndersonDarling2 (long n, double x);

Returns the value of the Anderson-Darling distribution at z for a sample of n independent
uniforms over (0, 1) using Marsaglia’s and al. algorithm [29]. First the limiting distribution for
n — oo is computed to within 6-digit accuracy according to the authors. Then an empirical
correction obtained by simulation is added for finite n. For n = 1, the procedure returns the

exact value, Fy(z) = V1 —4e *~! for x > In(4) — 1.

Discrete distributions

12

double fdist_Geometric (double p, long s);

Returns

F(s)=Y pl-py = 1-(1-p)*, (34)
=0

the distribution function of a geometric random variable with parameter p, evaluated at s.
Restriction: 0 < p < 1.

double fdist_Poissonl (double lambda, long s);

Returns

S)\]
-
Fy(s)=e)~ T (35)
j=0

the Poisson distribution function with parameter A\ = lambda, evaluated at s. In the cases
where the Poisson distribution must be computed more than once with the same A, it is more

efficient to use fdist_Poisson?2 instead of fdist_Poissonl. Restriction: A > 0.

double fdist_Poisson2 (fmass_INFO W, long s);

Returns the Poisson distribution function (35) from the structure W, which must have been
created previously by calling fmass_CreatePoisson with the desired A.

double fdist_Binomiall (long n, double p, long s);
Returns .
n . .
Fe) =3 (1) P -pr (36)
— \J
J
the distribution function of a binomial random variable with parameters n and p, evaluated at s.
When the binomial distribution has to be computed more than once with the same parameters
n and p, it is more efficient to use fdist_Binomial2 instead of fdist_Binomiall, unless n is
very large (e.g., n > 10°). Restrictions: 0 < p <1 and n > 0.

double fdist_Binomial2 (fmass_INFO W, long s);

Returns the binomial distribution function (36) from the structure W, which must have been
created previously by calling fmass_CreateBinomial with the desired values of n and p.

double fdist_NegaBinl (long n, double p, long s);

Returns
S

=3 ("I - w, (37)

j=0
the distribution function of a negative binomial random variable with parameters n and p,
evaluated at s. If this distribution has to be computed more than once with the same n and p,

13

it is more efficient to use fdist_NegaBin2 instead of fdist_NegaBinl, unless n is very large.
Restrictions: n > 0 and 0 <p < 1.

double fdist_NegaBin2 (fmass_INFO W, long s);

Returns the negative binomial distribution function (37) from the structure W, which must have
been created previously by calling fmass_CreateBinomial with the desired values of n and p.

double fdist_Scan (long N, double d, long m);

Returns F'(m), the distribution function of the scan statistic with parameters N and d, evaluated
at m. For a description of this statistic and its distribution, see fbar_Scan, which computes its
complementary distribution F(m) =1— F(m — 1).

14

wdist

This module provides wrappers functions that are needed because the parameter of type
wdist_CFUNC in gofw_ActiveTestsl and in gofs_ContUnifTransform, for example, is not
type-compatible with the distribution functions provided in fdist, since the different distri-
butions take a different number of arguments.

#include <testulOl/fmass.h>

Types

typedef double (*wdist_CFUNC) (double [], double);

A generic continuous distribution function with an arbitrary number of parameters given in the
first argument. The second argument is the point z at which the function is evaluated.

typedef double (*wdist_DFUNC) (fmass_INFO, long);

A generic discrete distribution function over the set of integers. The first argument contains
the parameters of the function and possibly precomputed tables of values of the function. The
second argument is the point x at which the function is evaluated.

Wrap-up functions

double wdist_Normal (double Par[], double x);

Wrapper function for the standard normal distribution, needed for compatibility with the type
wdist_CFUNC used as a parameter in certain functions such as gofw_ActiveTestsl, etc. Returns
®(x), where @ is the standard normal distribution function, with mean 0 and variance 1. Par
is unused.

double wdist_ChiSquare (double Par[], double x);

Wrapper function for the chi-square distribution, similar to wdist_Normal. Returns P[X < z],
where X has the chi-square distribution with & degrees of freedom. The value of k must be in
Par([0].

double wdist_Unif (double Par[], double x);

Wrapper function for the uniform distribution. Returns z. Par is unused.

15

fbar

This module is similar to fdist, except that it provides procedures to compute or approx-
imate the complementary distribution function of X, which we define as F(r) = P[X > z],
instead of F'(x) = P[X < x]. Note that with our definition of F', one has F(z) = 1— F(x) for
continuous distributions and F(z) = 1 — F(x — 1) for discrete distributions over the integers.
This is non-standard but we find it convenient.

For more details about the specific distributions, see the module fdist. When F (x) is
very close to 1, these procedures generally provide much more precise values of F'(x) than
using 1 — F'(z) where F'(z) is computed by a procedure from fdist.

#include <testu01/gdef.h>
#include <testulOl/fmass.h>

Continuous distributions

double fbar_Unif (double x);

Returns 1 — z for z € [0,1], 1 for < 0, and 0 for > 1. This is the complementary uniform
distribution function over [0, 1].

double fbar_Expon (double x);

Returns the complementary exponential distribution: F(x) = e~ for > 0, and = 1 for z < 0.

double fbar_Weibull (double alpha, double x);

Returns the complementary standard Weibull distribution function with shape parameter o
[19], defined by F(z) = e¢=*" for > 0 and 1 for 2 < 0. Restriction: a > 0.

double fbar_Logistic (double x);

Returns F(x) = 1/(1+¢€%), the complementary standard logistic distribution function evaluated
at x [20].

double fbar_Pareto (double c, double x);

Returns F(z) = 1/z2¢ for z > 1 and 1 for z < 1, which is the complementary standard Pareto
distribution function [19]. Restriction: ¢ > 0.

double fbar_Normall (double x);

Returns an approximation of 1 — ®(z), where ® is the standard normal distribution function,
with mean 0 and variance 1. Uses a Chebyshev series giving 16 decimal digits of precision [36].

16

double fbar_Normal2 (double x);

Returns an approximation of 1—®(x), where ® is the standard normal distribution function, with
mean 0 and variance 1. Uses Marsaglia’s et al [31] fast method with tables lookup. Returns 15
decimal digits of precision. This function is approximately 1.3 times faster than fbar_Normall.

#ifdef HAVE_ERF
double fbar_Normal3 (double x);
#endif

Returns an approximation of 1—®(z), where & is the standard normal distribution function, with
mean 0 and variance 1. Uses the erfc function from the standard Unix C library. The macro
HAVE_ERF from mylib/gdef must be defined. This function is twice as fast as fbar_Normal2.

double fbar_BiNormall (double x, double y, double rho, int ndig);

Returns the value u of the upper standard bivariate normal distribution, given by

1 o0 o _r
U = —— e “dydx 38
21/ 1 — p? /x /y Y (38)
o Ty ty
2(1-p?)

where p = rho is the correlation between x and y, and ndig is the number of decimal digits of
accuracy. It calls the function fdist_BiNormall. The absolute error is expected to be smaller
than 10~¢, where d = ndig. Restriction: ndig < 15.

double fbar_BiNormal2 (double x, double y, double rho);

Returns the value of the upper standard bivariate normal distribution as defined in (38) above.
It calls the function fdist_BiNormal2 (see the description in module fdist). The function
gives an absolute error less than 5- 10716,

double fbar_ChiSquarel (long N, double x);

Returns F(z), the complementary chi-square distribution function with N degrees of freedom.
Uses the approximation given in [21, p.116] for N < 1000, and the normal approximation for
N > 1000. Gives no more than 4 decimals of precision for N > 1000.

double fbar_ChiSquare2 (long N, int d, double x);

Returns F(z), the complementary chi-square distribution function with N degrees of freedom,
by calling fbar_Gamma (N/2, d, x/2). The function will do its best to return d decimals digits
of precision (but there is no guarantee). Restrictions: N > 0 and 0 < d < 15.

17

double fbar_Gamma (double a, int d, double x);

Returns an approximation [4] of the complementary gamma distribution function with param-
eter a. The function tries to return d decimals digits of precision. For a not too large (e.g.,
a < 1000), d gives a good idea of the precision attained. Restrictions: a > 0 and 0 < d < 15.

double fbar_KS1 (long n, double x);

Returns the complementary Kolmogorov-Smirnov distribution F(z) = P[D,, > z] in a form
that is more precise in the upper tail, using the program described in [?]. It returns at least 10
decimal digits of precision everywhere for all n < 400, at least 6 decimal digits of precision for
400 < n < 200000, and a few correct digits (1 to 5) for n > 200000. Restrictions: n > 1 and
0<z< 1.

double fbar_KSPlus (long n, double x);

Returns the complementary Kolmogorov-Smirnov+ distribution F(z) = P[D;" >] in a form
that is more precise in the upper tail. It should return at least 8 decimal digits of precision
everywhere. Restrictions: n >0 and 0 <z < 1.

double fbar_LogNormal (double mu, double sigma, double x);

double fbar_JohnsonSB (double alpha, double beta, double a, double b,
double x);

double fbar_JohnsonSU (double alpha, double beta, double x);
double fbar_CramerMises (long n, double x);

double fbar_WatsonU (long n, double x);

double fbar_WatsonG (long n, double x);

double fbar_AndersonDarling (long n, double x);

Return the complementary distribution function P[X > z]. See the description of the respective
functions in fdist.

Discrete distributions

double fbar_Geometric (double p, long s);

Returns the complementary distribution function of a geometric random variable X with pa-

rameter p, F'(s) = P[X > s] = (1 — p)® for s > 0. Restriction: 0 < p < 1.

double fbar_Poissonl (double lambda, long s);

Returns the complementary distribution function P[X > s| for a Poisson random variable X
with parameter A\. Computes and adds the non-negligible terms in the tail. Restriction: A > 0.

18

double fbar_Poisson2 (fmass_INFO W, long s);

Returns the complementary Poisson distribution function, using the structure W which must
have been created previously by calling fmass_CreatePoisson with the desired .

double fbar_Binomial2 (fmass_INFO W, long s);

Returns the complementary distribution function P[X > s] for a binomial random variable X,
using the structure W which must have been created previously by calling fmass_CreateBinomial
with the desired values of n and p.

double fbar_NegaBin2 (fmass_INFO W, long s);

Returns the complementary distribution function P[X > s] for a negative binomial ran-
dom variable X, using the structure W which must have been created previously by calling
fmass_CreateNegaBin with the desired values of n and p.

double fbar_Scan (long N, double d, long m);
Return P[Sn(d) > m|, where Sn(d) is the scan statistic (see [17] and gofs_Scan), defined as

Sn(d)= sup nly, y+d, (39)
0<y<1—d

where d is a constant in (0, 1), n[y, y+d] is the number of observations falling inside the interval
[y,y + d], from a sample of N i.i.d. U(0,1) random variables. One has (see [1]),

N
PlSy(d) >m] =~ (% _N- 1) b(m) + 2 Z b(3) (40)
exp|—0%k2 /2]

~ 2(1—-P(0k)) + 6k (41)

dv2m

where ® is the standard normal distribution function,

bi) = <Jj>di(1—d)N_i,

[d
0 = —
1-d’
m
_ "N
dv N
For d < 1/2, (40) is exact for m > N/2, but only an approximation otherwise. The approx-
imation (41) is good when Nd? is large or when d > 0.3 and N > 50. In other cases, this
implementation sometimes use the approximation proposed by Glaz [17]. For more informa-
tion, see [1, 17, 41]. The approximation returned by this function is generally good when it is
close to 0, but is not very reliable when it exceeds, say, 0.4. Restrictions: N > 2 and d < 1/2.

19

finv

Here one finds procedures to compute or approximate the inverse of certain distribution
functions. Each procedure computes F'~!(u) = inf{z € R: F(x) > u}, where 0 < u < 1 and
F' is the distribution function of a specific type of random variable. These procedures can
be used, among other things, to generate the corresponding random variables by inversion,
by passing a U(0, 1) random variate as the value of w.

Several distributions are only implemented in standardized form here, i.e., with the lo-
cation parameter set to 0 and the scale parameter set to 1. To obtain the inverse for the
distribution shifted by zy and rescaled by a factor ¢, it suffices to multiply the returned value
by ¢ and add xg.

#include <testuOl/gdef.h> /* From the library mylib */
#include <testuOl/fmass.h>
#include <testulOl/fdist.h>
#include <testul0l/wdist.h>

Continuous distributions

double finv_Expon (double u);

Returns the inverse of the standard exponential distribution,

F7l(u) = —In(1 — u), 0<u<l.

double finv_Weibull (double alpha, double u);

Returns the inverse of the standard Weibull distribution,
F'u)=(-In(1—u)*, 0<u<l.

Restriction: o > 0.

double finv_ExtremeValue (double u);

Returns the inverse of the standard extreme value distribution,

F~l(u) = —In(—1n(u)), 0<u<l.

double finv_Logistic (double u);

Returns the inverse of the standard logistic distribution,

u
F) =1 0<u<l.
(u) n(l—u)’ <u<

20

double finv_Pareto (double c, double u);

Returns the inverse of the standard Pareto distribution,

F~l(u) = LY 0<u<l1
u) = 1—u , <wu<l1.

Restriction: ¢ > 0.

double finv_Normall (double u);

Returns an approximation of ®~!(u), where ® is the standard normal distribution function, with
mean 0 and variance 1. Uses rational Chebyshev approximations giving at least 15 decimal digits
of precision over most of the range [5]. Far in the lower tail (u < 107!22), the precision decreases
slowly until for v < 1073%, the function gives only 11 decimal digits of precision.

double finv_Normal2 (double u);

Returns an approximation of ®~!(u), where @ is the standard normal distribution function, with
mean 0 and variance 1. Uses Marsaglia’s et al [31] method with tables lookup. The method
works provided that the processor respects the IEEE-754 floating-point standard. Returns 6
decimal digits of precision. This function is twice as fast as finv_Normall.

double finv_LogNormal (double mu, double sigma, double u);

Returns the inverse of the lognormal distribution,

Restriction: o > 0.

double finv_JohnsonSB (double alpha, double beta, double a, double b,
double u);

Returns the inverse of the Johnson JSB distribution,

a+bv
F~Yu) =
(u) 14+v’
where .
d _
vzexp(og)a), 0<u<l.

and ®~! is the inverse of the standard normal distribution. Restrictions: 8 > 0 and a < x < b.

double finv_JohnsonSU (double alpha, double beta, double u);
Returns the inverse of the Johnson JSU distribution,

v—1/v

F () = 5

21

where

B

and ®! is the inverse of the standard normal distribution. Restriction: 8 > 0.

o1 —
U:exp<(u)a), 0<u<l.

double finv_ChiSquarel (long k, double u);

Returns a quick and dirty approximation of F~!(u), where F is the chi-square distribution with
k degrees of freedom. Uses the approximation given in Figure L.24 of [6].

double finv_ChiSquare2 (long k, double u);

Returns an approximation of F~!(u), where F is the chi-square distribution with k degrees of
freedom. Uses the approximation given in [3] and in Figure L.23 of [6]. This function is up to
20 times slower than finv_ChiSquarel.

double finv_Student (long n, double u);

Returns an approximation of F~!(u), where F is the Student-t distribution function with n
degrees of freedom. Uses an approximation giving at least 5 decimal digits of precision when
n > 8 or n < 2, and 3 decimal digits of precision when 3 < n < 7 (see [18] and Figure L.28 of

[6]).

double finv_BetaSymmetric (double p, double u);

Returns a special approximation of F~!(u), where F(z) is the symmetric beta distribution with
shape parameter p = ¢ as defined in (21). Uses four different hypergeometric series (for the
four cases x close to 0 and p < 1, x close to 0 and p > 1, x close to 1/2 and p < 1, and z close
to 1/2 and p > 1) to compute the distribution v = F(z), which are then solved by Newton’s
method for the solution of equations. For p > 100000, uses a normal approximation given in
[32]. Restrictions: p >0 and 0 < wu < 1.

double finv_GenericC (wdist_CFUNC F, double par[], double u, int d,
int detail);

Uses binary search to find the inverse of a generic continuous distribution function F', evaluated
at u. The parameters of F' (if any) are passed in the array par. The returned value has d
decimal digits of precision. If detail > 0, the procedure will print detailed information about
the inversion process. Restrictions: 0 <u <1 and d > 0.

22

Discrete distributions

long finv_Geometric (double p, double u);
Returns the inverse of the geometric distribution,

ln(l—u)J’

_ <u<Il.
(1 = p) 0<u<l1

Fl(u) = {

Restriction: 0 < p < 1.

23

gofs

This module provides tools for computing goodness-of-fit test statistics for testing the
hypothesis H, that a sample of N observations Vi, ..., Vy comes from a given univariate
probability distribution F'. These test statistics generally measure, in different ways, the
distance between F' and the empirical distribution function (EDF) Eyof Vi,...,Vx. They
are also called EDF test statistics. The observations V; are usually transformed into U; =
F(V;), which always satisfy 0 < U; < 1, and which follow the U(0, 1) distribution under H,.
These observations are also usually sorted. Here, Up), ..., Uy stand for N observations
Uy, ..., Uy sorted by increasing order, where 0 < U; < 1.

Procedures for applying certain types of transformations to the observations V; or U; are
also provided. This includes the transformation U; = F(V;), as well as the power ratio and
iterated spacing transformations [40].

#include <testuOl/bitset.h> /* From the library mylib */
#include <testuOl/fmass.h>
#include <testulOl/fdist.h>
#include <testuOl/wdist.h>

Environment variables

extern double gofs_MinExpected;

Used for the chi-square tests. When a chi-square test statistic is computed, the expected number
of observations in each class should be large enough if we want the chi-square test statistic to
follow approximately the chi-square distribution. Larger expected numbers are usually required
when these numbers differ between classes [35]. The function gofs_MergeClasses can be used
to regroup classes in order to make sure that the expected number in each class is at least
gofs_MinExpected. The default value of this variable is 10.0.

Transforming the observations

void gofs_ContUnifTransform (double V[], long N, wdist_CFUNC F,

double par[], double U[]);
Applies the transformation U; = F(V;) to the values in V[1..N], where F' is a continuous
distribution function given by F and with parameters in par, and puts the result in U[1..N].
If V contains random variables from the distribution function F, then U will contain uniform
random variables over (0,1).

void gofs_DiscUnifTransform (double V[], long N, wdist_DFUNC F,
fmass_INFO W, double U[]);

Applies the transformation U; = F(V;) to the values in V[1..N], where F' is a discrete distri-
bution function specified by F and the previously-created structure W, and puts the result in

24

U[1..N]. Note: If V[1..N] are the values of random variables with distribution function F, then
U[1..N] will contain the values of discrete random variables distributed over the set of values
taken by F, not uniform random variables over (0, 1).

void gofs_DiffD (double U[], double D[], long N1, long N2,
double a, double b);

Assumes that the real-valued observations U[N1..N2] are already sorted in increasing order and
computes the differences between the successive observations. The difference U[i+1] - U[i] is
put in D[i] for N1 <= i < N2, whereas U[N1] - a is put into D[N1-1] and b - U[N2] is put
into D[N2]. The sizes of the arrays U and D must be at least N2+1.

void gofs_DiffL (long U[], long D[], long N1, long N2, long a, long b);

#ifdef USE_LONGLONG

void gofs_DiffLL (longlong U[], longlong D[], long N1, long N2,
longlong a, longlong b);

void gofs_DiffULL (ulonglong U[], ulonglong D[], long N1, long N2,
ulonglong a, ulonglong b);

#endif

Same as gofs_DiffD, but for integer-valued observations.

void gofs_IterateSpacings (double V[], double S[], long N);

Applies one iteration of the iterated spacings transformation [23, 40]. Assumes that S[0...N]
contains the spacings between N real numbers Uy, ..., Uy in the interval [0, 1]. These spacings
are defined by

Si = Uity — Upy, 0<i<N,

where Uy = 0, Uny1) = 1, and Uy, ..., Uiy, are the U; sorted in increasing order. These
spacings may have been obtained by calling gofs_DiffD. This procedure transforms the spacings
into new spacings, by a variant of the method described in section 11 of [28] and also by Stephens
[40]: it sorts Sp,...,Sn to obtain S < Sy < Sy < --+ < Sy, computes the weighted
differences

So = (N+ 1)5(0),
S1 = N(Sq) —S0),
Sy = (N-=1)(S2 —S),

Sno= Sy —Swn-1)

and computes V; = Sy + .51 +---+ 85;_1 for 1 <i < N. It then returns Sp,..., Sy in S[0. .N]
and Vi,...,Vy in V[1..N].

Under the assumption that the U; are i.i.d. U(0, 1), the new S; can be considered as a new set
of spacings having the same distribution as the original spacings, and the V; are a new sample
of i.i.d. U(0,1) random variables, sorted by increasing order.

25

This transformation is useful to detect clustering in a data set: A pair of observations that are
close to each other is transformed into an observation close to zero. A data set with unusually
clustered observations is thus transformed to a data set with an accumulation of observations
near zero, which is easily detected by the Anderson-Darling GOF test.

void gofs_PowerRatios (double U[], long N);

Applies the power ratios transformation W described in section 8.4 of Stephens [40]. Assume
that U[1...N] contains N real numbers Uy, ..., Uy from the interval [0, 1], already sorted in
increasing order, and computes the transformations:

Ui = (Uw/Uusry)', i=1,....N,

with Uiy 1) = 1. These U! are sorted in increasing order and put back in U[1...N]. If the Ug
are i.i.d. U(0,1) sorted by increasing order, then the U/ are also i.i.d. U(0, 1).

This transformation is useful to detect clustering, as explained in gofs_IterateSpacings, ex-
cept that here a pair of observations close to each other is transformed into an observation close
to 1. An accumulation of observations near 1 is also easily detected by the Anderson-Darling

GOF test.

void gofs_MergeClasses (double NbExp[], long Locl[],
long *smin, long *smax, long *NbClasses) ;

This function is convenient for regrouping classes before applying a chi-square test, in the case
where the expected number of observations in some of the classes may be too small. It merges
classes of observations so that the expected number of observations in each class is at least
gofs_MinExpected. Initially, the expected numbers in each class are in NbExp [*smin. . . *smax].
When the function returns, if Loc[s] = j, this means that class s has been merged with class j.
In this case, all observations that previously belonged to class s are redirected to class 7, and
NbExp[s] has been added to NbExp[j| and then set to zero. NbClasses gives the final number of
classes, smin contains the new index of the lowest class, and smax the new index of the highest
class.

void gofs_WriteClasses (double NbExp[], long Locl[],

long smin, long smax, long NbClasses);
Prints the classes before or after their regrouping by gofs_MergeClasses. The parameters are
the same as for the latter function. If NbClasses > 0, assumes that gofs_MergeClasses has
already been called to regroup classes and prints the classes after the regrouping. If NbClasses
<= 0, prints only the classes before any regrouping.

Computing EDF test statistics

double gofs_Chi2 (double NbExp[], long Count[], long smin, long smax);

Computes and returns the chi-square statistic for the observations o; in Count [smin. . .smax],
for which the corresponding expected values e; are in NbExp [smin. . .smax]. Assuming that ¢

26

goes from 1 to k, where k = smax-smin+1 is the number of classes, the chi-square statistic is
defined as

X2 — Z M' (42)

Under the hypothesis that the e; are the correct expectations and if these e; are large enough,
X2 follows approximately the chi-square distribution with k& — 1 degrees of freedom. If some of
the e; are too small, one can use gofs_MergeClasses to regroup classes.

double gofs_Chi2Equal (double NbExp, long Count[], long smin, long smax);

Similar to gofs_Chi2, except that the expected number of observations per class is assumed to
be the same for all classes, and equal to NbExp.

long gofs_Scan (double U[], long N, double d);

Computes and returns the scan statistic Sy (d), defined in (39). The N observations in the array
U[1..N] must be real numbers in the interval [0, 1], sorted in increasing order. (See fbar_Scan
for the distribution function of Sy (d)).

double gofs_CramerMises (double U[], long N);
Computes and returns the Cramér-von Mises statistic W3 (see [13, 38, 39]), defined by

N) 2
1 (j —0.5)
W2 — o U—Y9)
N7 12N +jz:1 <U(J) N) ’ (43)
assuming that U[1...N] contains Uy, ..., U(y) sorted in increasing order.

double gofs_WatsonG (double U[], long N);
Computes and returns the Watson statistic G (see [42, 10]), defined by

Gy = VN max {j/N Uy +Uy—1/2} (44)
1<j<N

= VN (D}, +Un—1/2),

where U y is the average of the observations U(;), assuming that U[1...N] contains the sorted
U(1)7 cey U(N)

double gofs_WatsonU (double U[], long N);
Computes and returns the Watson statistic U (see [13, 38, 39]), defined by

N . 2
2 _ 1 (j —0.5)
Wy = 12N+; Uy = [- (45)
Uy = Wi-N(Uy-1/2)". (46)

27

where U is the average of the observations U(;), assuming that U[1...N] contains the sorted
U(l), ceey U(N)

double gofs_AndersonDarling (double U[], long N);

Computes and returns the Anderson-Darling statistic A% (see [26, 39, 2]), defined by
L N
A3 = —-N-— v D {25 - 1)In(Uy) + (2N +1-2j) In(1 — U;))}

J=1

assuming that U[1...N] contains Uy, ..., Up).

void gofs_KS (double U[], long N, double *DP, double *DM, double *D);
Computes the Kolmogorov-Smirnov (KS) test statistics D;, Dy, and Dy, defined by

+ ; _ .

Dy = max (j/N-Ug), (47)
Dy = 12}%&(@;’)*(]’*1)/1\7), (48)
Dy = max (D}, Dy). (49)

and return their values in DP, DM, and D, respectively. These statistics compare the empirical
distribution of Uy, ..., Uy, which are assumed to be in U[1...N], with the uniform distribu-
tion.

void gofs_KSJumpOne (double U[], long N, double a, double *DP, double *DM);

Compute the KS statistics D} (a) and Dy(a) defined in the description of the function
fdist_KSPlusJumpOne, assuming that F' is the uniform distribution over [0,1] and that
U(l), e U(N) are in U[1...N]. Returns the values in DP and DM.

28

gofw

This module contains functions used to print results of GOF test statistics (see module
gofs), or to apply a series of tests simultaneously and print the results. Strictly speaking,
applying several tests simultaneously makes the p-values “invalid” in the sense that the
probability of having at least one p-value less than 0.01, say, is larger than 0.01. One
must therefore be careful with the interpretation of these p-values (one could use, e.g., the
Bonferroni inequality [25]). Applying simultaneous tests is convenient in some situations,
such as in screening experiments for detecting statistical deficiencies in random number
generators. In that context, rejection of the null hypothesis typically occurs with extremely
small p-values (e.g., less than 107'°), and the interpretation is quite obvious in this case.

The module also provides tools to plot an empirical or theoretical distribution function,
by creating a data file that contains a graphic plot in a format compatible with the software
specified by the environment variable gofw_GraphSoft.

#include <testuOl/gdef.h> /* From the library mylib */
#include <testuOl/bitset.h> /* From the library mylib */
#include <testuOl/fdist.h>

#include <testu0l/wdist.h>

#include <stdio.h>

Plotting distribution functions

typedef enum {
gofw_Gnuplot,
ofw_Mathematica
% gofw_GraphType;

Data file formats used for plotting functions or creating graphics.

extern gofw_GraphType gofw_GraphSoft;

Environment variable that selects the type of software to be used for plotting the graphs of
functions. The data files produced by gofw_GraphFunc and gofw_GraphDistUnif will be in
a format suitable for this selected software. The default value is gofw_Gnuplot. To display a
graphic in file £ using gnuplot, for example, one can use the command “plot f with steps,
x with lines” in gnuplot.

void gofw_GraphFunc (FILE *f, wdist_CFUNC F, double par[], double a,
double b, int m, int mono, char Desc[]);

Prints data to plot the graph of function F' over the interval [a,b], in file £. It is assumed that
the parameters of F' are in par, so that F(par, x) returns the value of F' at x, and that F
is either non-decreasing or non-increasing. If mono = 1, the procedure will verify that F' is
non-decreasing; if mono = —1, it will verify that F is non-increasing. (This is useful to verify if

29

F is effectively a sensible approximation to a distribution function or its complementary in the
given interval.) The string Desc should give a short caption for the graphic plot. The procedure
computes the m + 1 points (z;, F'(x;)), where x; = a+i(b—a)/m for i = 0,1,..., m, and writes
these points to file £ in a format suitable for the software specified by gofw_GraphSoft. If £ =
NULL, the results are sent to the standard output.

void gofw_GraphDistUnif (FILE *f, double U[], long N, char Desc[]);

Prints data in file £ to plot the empirical distribution of Uy, ..., Uy), which are assumed to
be in U[1...N], and to compare it with the uniform distribution. The two endpoints (0,0) and
(1,1) are always printed. The string Desc should give a short caption for the graphic plot. The
data is printed in a format suitable for the software specified by gofw_GraphSoft. If f = NULL,
the results are sent to the standard output.

Computing and printing p-values for EDF test statistics

extern double gofw_Epsilonp;
extern double gofw_Epsilonpl;

Environment variables used in gofw_WritepO to determine which p-values are too close to 0 or
1 to be printed explicitly. If gofw_Epsilonp = ¢ and gofw_Epsilonpl = €;, then any p-value
(sometimes also called significance level) less than e or larger than 1 —e; is not written explicitly;
the program simply writes “eps” (p-values close to 0) or “1 - eps1” (p-values close to 1). The
default values are gofw_Epsilonp = 1073% and gofw_Epsilonpl = 10~!°. The default value of
gofw_Epsilonp is slightly bigger than the minimum normalized positive floating-point number
DBL_MIN = 2.2 % 1073 given in the IEEE floating-point standard, while gofw_Epsilonpl is
slightly bigger than DBL_EPSILON = 2.2 x 10716, the “machine €” for type double.

extern double gofw_Suspectp;

Environment variable used in gofw_Writepl to determine which p-values should be marked as
suspect when printing test results. If gofw_Suspectp = «, then any p-value less than « or larger
than 1 — « is considered suspect and is “singled out” by gofw_Writepl. The default value is
0.001.

double gofw_pDisc (double pL, double pR);
Computes a variant of the p-value p whenever a test statistic has a discrete probability distri-
bution. This p-value is defined as follows:
pr = PY <y
pr = PY =y

PR if pr < pr
p = 1—pr, ifpr=>prandpr <0.5
0.5 otherwise.

30

The function takes p;, and pgr as input and returns p.

void gofw_WritepO (double p);

Prints the p-value p of a test, in the format “1 — p” if p is close to 1, and p otherwise.

void gofw_Writepl (double p);

“n

Prints the string “"p-value of test : 7, then calls gofw_WritepO to print p, and adds the
marker “sx*xx*” if p is considered suspect (uses the environment variable gofw_Suspectp for
this).

void gofw_Writep2 (double x, double p);

Prints x on the current output line, then goes to the next line and calls gofw_Writepl (p).

void gofw_WriteKSO (long N, double DP, double DM, double D);

Computes the p-values of the three Kolmogorov-Smirnov statistics DX], Dy, and Dy, whose
values are in DP, DM, D, respectively, assuming a sample of size N. Then prints these statistics
and their p-values using gofw_Writep2 for each one.

void gofw_WriteKS1 (double V[], long N, wdist_CFUNC F, double par[]);

Computes the KS test statistics to compare the empirical distribution of the observations in
V[1..N] with the theoretical distribution F, with parameters in par, then calls gofw_KSO to
compute and print the p-values. These tests are valid only if F is continuous.

void gofw_WriteKSJumpOneO (long N, double a, double DP);

Similar to gofw_KSO, but for the KS statistic D} (a) defined in (28). Writes a header, computes
the p-value and calls gofw_Writep2.

void gofw_WriteKSJumpOnel (double V[], long N,
wdist_CFUNC F, double par[], double a);

Similar to gofw_WriteKS1, but for D (a) defined in (28). Calls gofw_WriteKSJumpOneO.

Applying several tests at once and printing results

Higher-level tools for applying several EDF goodness-of-fit tests simultaneously are of-
fered here. The test types available are listed in gofw_TestType. The environment variable
gofw_ActiveTests specifies which tests in this list are to be performed when asking for sev-
eral simultaneous tests via the functions gofw_ActiveTests0, gofw_WriteActiveTestsO,
etc.

31

typedef enum {

gofw_KSP, /* Kolmogorov-Smirnov+ */
gofw_KSM, /* Kolmogorov-Smirnov- */
gofw_KS, /* Kolmogorov-Smirnov */
gofw_AD, /* Anderson-Darling */
gofw_CM, /* Cramer-vonMises */
gofw_WG, /* Watson G x/
gofw_WU, /* Watson U */
gofw_Mean, /* Mean */
gofw_Var, /* Variance */
gofw_Cor, /* Correlation */
gofw_Sum, /* Sum */

ofw_NTestTypes /* Total number of test types */
% gofw_TestType;

Types of EDF tests supported by the present modules. Here, gofw_Sum, gofw_Mean, gofw_Var
and gofw_Cor usually represent tests based on the sum, the mean, the variance of the observa-
tions and on the correlation between pairs of successive observations.

typedef double gofw_TestArray [gofw_NTestTypes];

Array of values, one for each type of EDF test statistic. Can be used to store the values of these
statistics or their p-values, for example.

extern char *gofw_TestNames [gofw_NTestTypes];

Name of each gofw_TestType test. Could be used for printing the test results, for example.

extern bitset_BitSet gofw_ActiveTests;

The set of EDF tests that are to be performed when calling the procedures gofw_ActiveTestsO,
gofw_WriteActiveTestsO, etc. By default, this set contains gofw_KSP, gofw_KSM, and gofw_AD.
Note: gofw_Sum, gofw_Mean, gofw_Var and gofw_Cor are always excluded from this set of active
tests.

void gofw_InitTestArray (gofw_TestArray A, double x);

Sets all elements of array A to x.

void gofw_TestsO (double U[], long N, gofw_TestArray sVal);

Computes all EDF test statistics in gofw_TestType (except gofw_Mean, gofw_Var gofw_Cor and
gofw_Sum) to compare the empirical distribution of U, (1)s - - - » Uy with the uniform distribution,
assuming that these sorted observations are in U[1...N]. If N > 1, returns in sVal[0..7] the
values of the KS statistics D7, Dy and Dy, of the Cramér-von Mises statistic WJ%], Watson’s
Gy and UJQ\,7 Anderson-Darling’s A?\,, and the average of the U;’s, respectively. If N = 1, only
puts U[1] in sVal [gofw_Mean] and 1 - U[1] in sVal[gofw_KSP]. Calling this function is more
efficient than computing these statistics separately by calling the corresponding procedures in
gofs.

32

void gofw_Testsl (double V[], long N, wdist_CFUNC F, double parl[],
gofw_TestArray sVal);
Similar to gofw_TestO, except that the observations are in V[1..N], not necessarily sorted,
and that their empirical distribution is compared with the continuous distribution F, whose
parameters (if any) are in par. If N = 1, only puts V[1] in sVal[gofw_Mean] and 1 - F(par,
V[1]) in sVal[gofw_KSP].

void gofw_ActiveTestsO (double U[], long N,

gofw_TestArray sVal, gofw_TestArray pVal);
Computes the EDF test statistics by calling gofw_TestsO, then computes the p-values of
those that currently belong to gofw_ActiveTests, and return these quantities in sVal and
pVal, respectively. Assumes that Uy),...,Uy) are in U[1...N] and that we want to com-
pare their empirical distribution with the uniform distribution. If N = 1, only puts U[1] in
sVal[gofw_Mean],and 1 - U[1] in sVal[gofw_KSP], pVall[gofw_KSP], and pVal[gofw_Mean].

void gofw_ActiveTestsl (double V[], long N, wdist_CFUNC F, double parl[],
gofw_TestArray sVal, gofw_TestArray pVal);
Similar to gofw_ActiveTestsO, except that the observations are in V[1..N], not necessar-
ily sorted, and that we want to compare their empirical distribution with the distribution F,
whose parameters (if any) are in par. The EDF tests are valid only if F is continuous. If
N = 1, only puts V[1] in sVal[gofw_Mean], and 1 - F(par, V[1]) in sVal[gofw_KSP],
pVal[gofw_KSP], and pVal [gofw_Mean].

void gofw_ActiveTests2 (double V[], double U[], long N, wdist_CFUNC F,
double par[], gofw_TestArray sVal,
gofw_TestArray pVal);

Similar to gofw_ActiveTests1, but first sorts the V and then returns the U computed from
Ulj] = F(par,V[j]), j=1...,N

and sorted.

void gofw_WriteActiveTestsO (long N, gofw_TestArray sVal,

gofw_TestArray pVal);
Writes the p-values of the active EDF test statistics, which are in gofw_ActiveTests. It is
assumed that the values of these statistics and their p-values are already computed, in sVal
and pVal, and that the sample size is N. These statistics and p-values are printed using
gofw_Writep?2 for each one. If N =1, prints only pVal [gofw_KSP] using gofw_Writepl.

void gofw_WriteActiveTestsl (double V[], long N,
wdist_CFUNC F, double parl[]);

This is equivalent to calling gofw_ActiveTestsl (V, N, F, par, sVal, pVal) followed by
gofw_WriteActiveTestsO (N, sVal, pVal).

33

void gofw_WriteActiveTests2 (long N, gofw_TestArray sVal,
gofw_TestArray pVal, char Desc []?;

If N =1, prints the string Desc followed by the elements gofw_Mean of sVal and pVal. Other-
wise calls gofw_WriteActiveTestsO (N, sVal, pVal).

void gofw_IterSpacingsTestsO (double U[], long N, int k,
lebool printval, lebool graph, FILE *f);

Repeats the following k& times: Applies the gofs_IterateSpacings transformation to the
Uwy, -+ > Uy, assuming that these observations are in U[1...N], then computes the EDF
test statistics and calls gofw_ActiveTestsO after each transformation. The function returns
the original array U (the transformations are applied on a copy of U). If printval = TRUE,
prints all the values to the standard output after each iteration. If graph = TRUE, calls
gofw_GraphDistUnif after each iteration to print to file £ the data for plotting the distribution
function of the Uj;.

void gofw_IterPowRatioTestsO (double U[], long N, int k,
lebool printval, lebool graph, FILE xf);

Similar to gofw_IterSpacingsTestO, but with the gofs_PowerRatios transformation.

34

statcoll

This module contains some basic tools for collecting statistical observations and comput-
ing simple statistics on them.

Collector type

typedef struct {
double *V;

long Dim;

long NObs;

char *Desc;

} statcoll_Collector;

A collector of real-valued statistical observations. The array V has dimensions Dim + 1 (i.e.,
elements V[0] to V[Dim]) and contains NObs observations in V[1] to V[NbObs]. The element
V[0] can be used for special purposes. The character string Desc (max. 127 characters) contains
the name of the collector (used for printing reports, etc.). A collector is created by calling
statcoll_Create and destroyed by calling statcoll_Delete. Observations are added one at
a time by calling statcoll_AddObs.

Prototypes

statcoll_Collector * statcoll_Create (long N, const char Desc[]);

Creates and returns a collector that can take up to N observations. Initializes its fields Dim to
N, NObs to 0, Desc to Desc, and allocates V[0..Dim]. (If Desc is too long, the description will
be truncated). This function must be called for each new collector statcoll_Collector. One
may call statcoll_Init later to reinitialize a collector or to change its dimension.

statcoll_Collector * statcoll_Delete (statcoll_Collector *S);

Releases the space allocated for arrays V and Desc in this collector, then deletes the collector,
and returns the NULL pointer.

void statcoll_Init (statcoll_Collector *S, long N);

Initializes the collector S by setting its observations counter NObs to 0. Then ensures that its
dimension Dim is at least N (enlarges the array V if needed).

void statcoll_SetDesc (statcoll_Collector *S, const char Descl[]);
Set the Desc field of collector S to Desc.

35

void statcoll_AddObs (statcoll_Collector *S, double x);

Adds an observation of value x to the collector S. If the array V is already full (NObs = Dim), it
will be automatically enlarged (Dim will be doubled) to accomodate the new observations.

void statcoll_Write (statcoll_Collector *S, int k, int pl, int p2, int p3);

Writes the observations currently in collector S, k values per line, with at least p1 positions per
value, p2 digits after the decimal point, and p3 significant digits.

double statcoll_Average (statcoll_Collector *S);

Returns the average of the observations currently in collector S.

double statcoll_Variance (statcoll_Collector *3);

Returns the sample variance of the observations currently in collector S, i.e.,

N
ZX Xn)%,

where X1,..., Xy are the N observations and X their average.

double statcoll_AutoCovar (statcoll_Collector *S, int k);

Returns the sample autocovariance of lag k for the observations currently in collector 8, i.e.,

1 N—k
A X, , _ X2
O = m ; (XzXerk XN)7

where X1,..., Xy are the N observations and Xy their average.

double statcoll_Covar (statcoll_Collector *S1, statcoll_Collector *S2);

Returns the sample covariance between the observations in collector S1 and those in collector
S2, i.e.,

N
1 o
N_1 D (XiY; — XnYy),
i=1
where X1,..., Xy are the N observations in S1, Y7,..., Yy are the N observations in 82, and
Xy and Yy are their respective averages. The two collectors must contain the same number of

observations.

36

References

1]

[10]

[11]

[12]

[13]

[14]

N. H. Anderson and D. M. Titterington. A comparison of two statistics for detecting
clustering in one dimension. Journal of Statistical Computation and Simulation, 53:103—
125, 1995.

T. W. Anderson and D. A. Darling. Asymptotic theory of certain goodness of fit criteria
based on stochastic processes. Annals of Mathematical Statistics, 23:193-212, 1952.

D. J. Best and D. E. Roberts. Algorithm AS 91: The percentage points of the y?
distribution. Applied Statistics, 24:385—-388, 1975.

G. P. Bhattacharjee. The incomplete gamma integral. Applied Statistics, 19:285-287,
1970. AS32.

J. M. Blair, C. A. Edwards, and J. H. Johnson. Rational Chebyshev approximations
for the inverse of the error function. Mathematics of Computation, 30:827-830, 1976.

P. Bratley, B. L. Fox, and L. E. Schrage. A Guide to Simulation. Springer-Verlag, New
York, NY, second edition, 1987.

J. R. Brown and M. E. Harvey. Rational arithmetic MATHEMATICA functions to
evaluate the one-sided one-sample K-S cumulative sample distribution. Journal of

Statistical Software, 19(6):1-32, 2007.

J. R. Brown and M. E. Harvey. Rational arithmetic MATHEMATICA functions to
evaluate the two-sided one sample K-S cumulative sample distribution. Journal of

Statistical Software, 26(2):1-40, 2008.

D. A. Darling. On the theorems of Kolmogorov-Smirnov. Theory of Probability and Its
Applications, V(4):356-360, 1960.

D. A. Darling. On the asymptotic distribution of Watson’s statistic. The Annals of
Statistics, 11(4):1263-1266, 1983.

T. G. Donnelly. Algorithm 462: Bivariate normal distribution. Communications of the
ACM, 16(10):638, 1973.

Z. Drezner and G. O. Wesolowsky. On the computation of the bivariate normal integral.
Journal of Statistical Computation and Simulation, 35:101-107, 1989.

J. Durbin. Dustribution Theory for Tests Based on the Sample Distribution Func-
tion. SIAM CBMS-NSF Regional Conference Series in Applied Mathematics. STAM,
Philadelphia, PA, 1973.

W. Gautschi. Algorithm 222: Incomplete beta function ratios. Communications of the

ACM, 7(3):143-144, 1964.

37

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

W. Gautschi. Certification of algorithm 222: Incomplete beta function ratios. Com-
munications of the ACM, 7(3):244, 1964.

A. Genz. Numerical computation of rectangular bivariate and trivariate normal and
t probabilities. Statistics and Computing, 14:151-160, 2004. See http://www.math.
wsu.edu/faculty/genz/homepage.

J. Glaz. Approximations and bounds for the distribution of the scan statistic. Journal
of the American Statistical Association, 84:560-566, 1989.

G. W. Hill. Algorithm 395: Student’s t-distribution. Communications of the ACM,
13:617-619, 1970.

N. L. Johnson, S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions,
volume 1. Wiley, 2nd edition, 1994.

N. L. Johnson, S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions,
volume 2. Wiley, 2nd edition, 1995.

W. J. Kennedy Jr. and J. E. Gentle. Statistical Computing. Dekker, New York, NY,
1980.

M. Knott. The distribution of the Cramér-von Mises statistic for small sample sizes.
Journal of the Royal Statistical Society B, 36:430-438, 1974.

D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algo-
rithms. Addison-Wesley, Reading, MA, third edition, 1998.

S. Lang. FElliptic functions. Addison-Wesley, Reading, Mass., 1973.

A. M. Law and W. D. Kelton. Simulation Modeling and Analysis. McGraw-Hill, New
York, NY, third edition, 2000.

P. A. W. Lewis. Distribution of the Anderson-Darling statistic. Annals of Mathematical
Statistics, 32:1118-1124, 1961.

K. V. Mardia and P. J. Zemroch. Tables of the F' and Related Distributions with
Algorithms. Academic Press, London, 1978.

G. Marsaglia. A current view of random number generators. In Computer Science and
Statistics, Sixteenth Symposium on the Interface, pages 3—10, North-Holland, Amster-
dam, 1985. Elsevier Science Publishers.

G. Marsaglia and J. Marsaglia. Evaluating the Anderson-Darling distribution. Journal
of Statistical Software, 9(2):1-5, 2004. See http://www.jstatsoft.org/v09/i02/.

G. Marsaglia, W. W. Tsang, and J. Wang. Evaluating Kolmogorov’s distribution.
Journal of Statistical Software, 8(18):1-4, 2003. See http://www.jstatsoft.org/
v08/1i18/.

38

[31]

[32]

[33]

[34]

[35]

[36]

G. Marsaglia, A. Zaman, and J. C. W. Marsaglia. Rapid evaluation of the inverse
normal distribution function. Statistics and Probability Letters, 19:259-266, 1994.

D. B. Peizer and J. W. Pratt. A normal approximation for binomial, F, beta, and other
common related tail probabilities. Journal of the American Statistical Association,
63:1416-1456, 1968.

W. Pelz and 1. J. Good. Approximating the lower tail-areas of the Kolmogorov-Smirnov
one-sample statistic. Journal of the Royal Statistical Society, Series B, 38(2):152-156,
1976.

J. Pomeranz. Exact cumulative distribution of the Kolmogorov-Smirnov statistic for
small samples (algorithm 487). Communications of the ACM, 17(12):703-704, 1974.

T. R. C. Read and N. A. C. Cressie. Goodness-of-Fit Statistics for Discrete Multivariate
Data. Springer Series in Statistics. Springer-Verlag, New York, NY, 1988.

J. L. Schonfelder. Chebyshev expansions for the error and related functions. Mathe-
matics of Computation, 32:1232-1240, 1978.

C. D. Sinclair and B. D. Spurr. Approximations to the distribution function of
the Anderson-Darling test statistic. Journal of the American Statistical Association,
83(404):1190-1191, 1988.

M. A. Stephens. Use of the Kolmogorov-Smirnov, Cramér-Von Mises and related
statistics without extensive tables. Journal of the Royal Statistical Society, Series B,
33(1):115-122, 1970.

M. S. Stephens. Tests based on EDF statistics. In R. B. D’Agostino and M. S. Stephens,
editors, Goodness-of-Fit Techniques. Marcel Dekker, New York and Basel, 1986.

M. S. Stephens. Tests for the uniform distribution. In R. B. D’Agostino and M. S.
Stephens, editors, Goodness-of-Fit Techniques, pages 331-366. Marcel Dekker, New
York and Basel, 1986.

S. R. Wallenstein and N. Neff. An approximation for the distribution of the scan
statistic. Statistics in Medicine, 6:197-207, 1987.

G. S. Watson. Optimal invariant tests for uniformity. In Studies in Probability and
Statistics, pages 121-127. North Holland, Amsterdam, 1976.

39

