tiny_dnn 1.0.0
A header only, dependency-free deep learning framework in C++11
Loading...
Searching...
No Matches
tiny_quantized_matmul_kernel.h
1/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2
3Licensed under the Apache License, Version 2.0 (the "License");
4you may not use this file except in compliance with the License.
5You may obtain a copy of the License at
6
7 http://www.apache.org/licenses/LICENSE-2.0
8
9Unless required by applicable law or agreed to in writing, software
10distributed under the License is distributed on an "AS IS" BASIS,
11WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12See the License for the specific language governing permissions and
13limitations under the License.
14==============================================================================*/
15
16// Implements a quantized eight-bit version of the matmul operation.
17
18#include "gemmlowp/public/gemmlowp.h"
19#include "tiny_dnn/core/kernels/tiny_quantization_kernel.h"
20
21namespace tiny_dnn {
22namespace core {
23namespace kernels {
24
25template <bool TransposeA, bool TransposeB, bool TransposeC>
26void gemmlowp_multiply(const uint8_t* a_data,
27 const uint8_t* b_data,
28 int32_t* c_data,
29 int m,
30 int n,
31 int k,
32 int offset_a,
33 int offset_b,
34 int lda,
35 int ldb,
36 int ldc) {
37 const uint8_t* a_data_as_uint8 = a_data;
38 const uint8_t* b_data_as_uint8 = b_data;
39 int32_t* c_data_as_int32 = c_data;
40 static const gemmlowp::MapOrder ResultOrder =
41 !TransposeC ? gemmlowp::MapOrder::RowMajor : gemmlowp::MapOrder::ColMajor;
42 static const gemmlowp::MapOrder LhsOrder =
43 !TransposeA ? gemmlowp::MapOrder::RowMajor : gemmlowp::MapOrder::ColMajor;
44 static const gemmlowp::MapOrder RhsOrder =
45 !TransposeB ? gemmlowp::MapOrder::RowMajor : gemmlowp::MapOrder::ColMajor;
46 gemmlowp::MatrixMap<const std::uint8_t, LhsOrder> lhs(a_data_as_uint8, m, k,
47 lda);
48 gemmlowp::MatrixMap<const std::uint8_t, RhsOrder> rhs(b_data_as_uint8, k, n,
49 ldb);
50 gemmlowp::MatrixMap<std::int32_t, ResultOrder> result(c_data_as_int32, m, n,
51 ldc);
52 const std::tuple<> empty_pipeline = {};
53 gemmlowp::GemmContext context;
54 gemmlowp::GemmWithOutputPipeline<std::uint8_t, std::int32_t,
55 gemmlowp::DefaultL8R8BitDepthParams>(
56 &context, lhs, rhs, &result, -offset_a, -offset_b, empty_pipeline);
57}
58
59template <class T1, class T2, class Toutput>
60void tiny_quantized_matmul(const std::vector<T1>& a,
61 const std::vector<T2>& b,
62 std::vector<Toutput>& c,
63 const std::vector<size_t> shape_all,
64 const int32_t offset_a,
65 const int32_t offset_b,
66 const int32_t offset_c,
67 const int32_t mult_c,
68 const int32_t shift_c) {
69
70 // Make sure that we have valid quantization ranges for the input buffers.
71 // If the difference between the min and max is negative or zero, it makes
72 // it hard to do meaningful intermediate operations on the values.
73
74 int transpose_a_ = 0;
75 int transpose_b_ = 1;
76 int a_dim_remaining = 1 - transpose_a_;
77 int b_dim_remaining = 1 - transpose_b_;
78
79 const T1* a_data = &a[0];
80 const T2* b_data = &b[0];
81 Toutput* c_data = &c[0];
82
83 const bool transpose_c = false;
84 const size_t m = shape_all[a_dim_remaining];
85 const size_t n = shape_all[2 + b_dim_remaining];
86 const size_t k = shape_all[transpose_a_];
87 const size_t lda = shape_all[1];
88 const size_t ldb = shape_all[3];
89 const size_t ldc = n;
90
91 // The gemmlowp optimized library only works for a particular set of data
92 // types, so check if we meet those requirements and
93 // fall back to a slower reference implementation if not.
94 if (std::is_same<T1, uint8_t>() && std::is_same<T2, uint8_t>() &&
95 std::is_same<Toutput, int32_t>() && (offset_c == 0) && (mult_c == 1) &&
96 (shift_c == 0) && (transpose_c == false)) {
97 if (transpose_a_) {
98 if (transpose_b_) {
99 gemmlowp_multiply<true, true, false>(a_data, b_data, c_data, m, n, k,
100 offset_a, offset_b, lda, ldb,
101 ldc);
102 } else {
103 gemmlowp_multiply<true, false, false>(a_data, b_data, c_data, m, n, k,
104 offset_a, offset_b, lda, ldb,
105 ldc);
106 }
107 } else {
108 if (transpose_b_) {
109 gemmlowp_multiply<false, true, false>(a_data, b_data, c_data, m, n, k,
110 offset_a, offset_b, lda, ldb,
111 ldc);
112 } else {
113 gemmlowp_multiply<false, false, false>(a_data, b_data, c_data, m, n, k,
114 offset_a, offset_b, lda, ldb,
115 ldc);
116 }
117 }
118 } /*else {
119 ReferenceGemm<T1, T2, Toutput>(
120 transpose_a_, transpose_b_, transpose_c, m, n, k, a_data, offset_a,
121 lda, b_data, offset_b, ldb, c_data, shift_c, offset_c, mult_c, ldc);
122 }
123
124 float min_c_value;
125 float max_c_value;
126 quantization_range_for_multiplication<T1, T2, Toutput>(
127 min_a, max_a, min_b, max_b, &min_c_value, &max_c_value);*/
128 }
129
130}
131}
132} // namespace tiny_dnn