Ipopt 3.11.9
Loading...
Searching...
No Matches
MittelmannBndryCntrlDiri.hpp
Go to the documentation of this file.
1// Copyright (C) 2005, 2006 International Business Machines and others.
2// All Rights Reserved.
3// This code is published under the Eclipse Public License.
4//
5// $Id: MittelmannBndryCntrlDiri.hpp 2005 2011-06-06 12:55:16Z stefan $
6//
7// Authors: Andreas Waechter IBM 2005-10-18
8// based on MyNLP.hpp
9
10#ifndef __MITTELMANNBNDRYCNTRLDIRI_HPP__
11#define __MITTELMANNBNDRYCNTRLDIRI_HPP__
12
13#include "RegisteredTNLP.hpp"
14
15#ifdef HAVE_CONFIG_H
16#include "config.h"
17#else
18#include "configall_system.h"
19#endif
20
21#ifdef HAVE_CMATH
22# include <cmath>
23#else
24# ifdef HAVE_MATH_H
25# include <math.h>
26# else
27# error "don't have header file for math"
28# endif
29#endif
30
31#ifdef HAVE_CSTDIO
32# include <cstdio>
33#else
34# ifdef HAVE_STDIO_H
35# include <stdio.h>
36# else
37# error "don't have header file for stdio"
38# endif
39#endif
40
41using namespace Ipopt;
42
53{
54public:
57
60
64 virtual bool get_nlp_info(Index& n, Index& m, Index& nnz_jac_g,
65 Index& nnz_h_lag, IndexStyleEnum& index_style);
66
68 virtual bool get_bounds_info(Index n, Number* x_l, Number* x_u,
69 Index m, Number* g_l, Number* g_u);
70
72 virtual bool get_starting_point(Index n, bool init_x, Number* x,
73 bool init_z, Number* z_L, Number* z_U,
74 Index m, bool init_lambda,
75 Number* lambda);
76
78 virtual bool eval_f(Index n, const Number* x, bool new_x, Number& obj_value);
79
81 virtual bool eval_grad_f(Index n, const Number* x, bool new_x, Number* grad_f);
82
84 virtual bool eval_g(Index n, const Number* x, bool new_x, Index m, Number* g);
85
90 virtual bool eval_jac_g(Index n, const Number* x, bool new_x,
91 Index m, Index nele_jac, Index* iRow, Index *jCol,
92 Number* values);
93
98 virtual bool eval_h(Index n, const Number* x, bool new_x,
99 Number obj_factor, Index m, const Number* lambda,
100 bool new_lambda, Index nele_hess, Index* iRow,
101 Index* jCol, Number* values);
102
104
107 bool& use_x_scaling, Index n,
109 bool& use_g_scaling, Index m,
111
116 virtual void finalize_solution(SolverReturn status,
117 Index n, const Number* x, const Number* z_L, const Number* z_U,
118 Index m, const Number* g, const Number* lambda,
119 Number obj_valu,
120 const IpoptData* ip_data,
123
124protected:
129 Number ub_y, Number lb_u, Number ub_u,
130 Number d_const);
131
135 virtual Number y_d_cont(Number x1, Number x2) const =0;
137
138private:
153
178
183 inline Index y_index(Index i, Index j) const
184 {
185 return j + (N_+2)*i;
186 }
189 inline Index pde_index(Index i, Index j) const
190 {
191 return (j-1) + N_*(i-1);
192 }
194 inline Number x1_grid(Index i) const
195 {
196 return h_*(Number)i;
197 }
199 inline Number x2_grid(Index i) const
200 {
201 return h_*(Number)i;
202 }
204};
205
208{
209public:
212
215
216 virtual bool InitializeProblem(Index N)
217 {
218 if (N<1) {
219 printf("N has to be at least 1.");
220 return false;
221 }
222 Number alpha = 0.01;
223 Number lb_y = -1e20;
224 Number ub_y = 3.5;
225 Number lb_u = 0.;
226 Number ub_u = 10.;
227 Number d_const = -20.;
228 SetBaseParameters(N, alpha, lb_y, ub_y, lb_u, ub_u, d_const);
229 return true;
230 }
231protected:
233 virtual Number y_d_cont(Number x1, Number x2) const
234 {
235 return 3. + 5.*(x1*(x1-1.)*x2*(x2-1.));
236 }
237private:
243};
244
247{
248public:
251
254
255 virtual bool InitializeProblem(Index N)
256 {
257 if (N<1) {
258 printf("N has to be at least 1.");
259 return false;
260 }
261 Number alpha = 0.;
262 Number lb_y = -1e20;
263 Number ub_y = 3.5;
264 Number lb_u = 0.;
265 Number ub_u = 10.;
266 Number d_const = -20.;
267 SetBaseParameters(N, alpha, lb_y, ub_y, lb_u, ub_u, d_const);
268 return true;
269 }
270protected:
272 virtual Number y_d_cont(Number x1, Number x2) const
273 {
274 return 3. + 5.*(x1*(x1-1.)*x2*(x2-1.));
275 }
276private:
282};
283
286{
287public:
290
293
294 virtual bool InitializeProblem(Index N)
295 {
296 if (N<1) {
297 printf("N has to be at least 1.");
298 return false;
299 }
300 Number alpha = 0.01;
301 Number lb_y = -1e20;
302 Number ub_y = 3.2;
303 Number lb_u = 1.6;
304 Number ub_u = 2.3;
305 Number d_const = -20.;
306 SetBaseParameters(N, alpha, lb_y, ub_y, lb_u, ub_u, d_const);
307 return true;
308 }
309protected:
311 virtual Number y_d_cont(Number x1, Number x2) const
312 {
313 return 3. + 5.*(x1*(x1-1.)*x2*(x2-1.));
314 }
315private:
321};
322
325{
326public:
329
332
333 virtual bool InitializeProblem(Index N)
334 {
335 if (N<1) {
336 printf("N has to be at least 1.");
337 return false;
338 }
339 Number alpha = 0.;
340 Number lb_y = -1e20;
341 Number ub_y = 3.2;
342 Number lb_u = 1.6;
343 Number ub_u = 2.3;
344 Number d_const = -20.;
345 SetBaseParameters(N, alpha, lb_y, ub_y, lb_u, ub_u, d_const);
346 return true;
347 }
348protected:
350 virtual Number y_d_cont(Number x1, Number x2) const
351 {
352 return 3. + 5.*(x1*(x1-1.)*x2*(x2-1.));
353 }
354private:
360};
361
362#endif
Number * x
Input: Starting point Output: Optimal solution.
Number Number Index Number Number Index Index nele_hess
Number of non-zero elements in Hessian of Lagrangian.
Number Number * g
Values of constraint at final point (output only - ignored if set to NULL)
Number Number Index Number Number Index nele_jac
Number of non-zero elements in constraint Jacobian.
Number Number * x_scaling
Number obj_scaling
Number Number Number * g_scaling
Number Number Index m
Number of constraints.
Number Number Index Number Number Index Index Index index_style
indexing style for iRow & jCol, 0 for C style, 1 for Fortran style
Class for all IPOPT specific calculated quantities.
Class to organize all the data required by the algorithm.
IndexStyleEnum
overload this method to return the number of variables and constraints, and the number of non-zeros i...
Definition IpTNLP.hpp:80
Class implementating Example 1.
MittelmannBndryCntrlDiri1 & operator=(const MittelmannBndryCntrlDiri1 &)
virtual bool InitializeProblem(Index N)
Initialize internal parameters, where N is a parameter determining the problme size.
virtual Number y_d_cont(Number x1, Number x2) const
Target profile function for y.
MittelmannBndryCntrlDiri1(const MittelmannBndryCntrlDiri1 &)
Class implementating Example 2.
MittelmannBndryCntrlDiri2 & operator=(const MittelmannBndryCntrlDiri2 &)
MittelmannBndryCntrlDiri2(const MittelmannBndryCntrlDiri2 &)
virtual Number y_d_cont(Number x1, Number x2) const
Target profile function for y.
virtual bool InitializeProblem(Index N)
Initialize internal parameters, where N is a parameter determining the problme size.
Class implementating Example 3.
MittelmannBndryCntrlDiri3 & operator=(const MittelmannBndryCntrlDiri3 &)
MittelmannBndryCntrlDiri3(const MittelmannBndryCntrlDiri3 &)
virtual Number y_d_cont(Number x1, Number x2) const
Target profile function for y.
virtual bool InitializeProblem(Index N)
Initialize internal parameters, where N is a parameter determining the problme size.
Class implementating Example 4.
MittelmannBndryCntrlDiri4(const MittelmannBndryCntrlDiri4 &)
virtual Number y_d_cont(Number x1, Number x2) const
Target profile function for y.
virtual bool InitializeProblem(Index N)
Initialize internal parameters, where N is a parameter determining the problme size.
MittelmannBndryCntrlDiri4 & operator=(const MittelmannBndryCntrlDiri4 &)
Base class for boundary control problems with Dirichlet boundary conditions, as formulated by Hans Mi...
Number x2_grid(Index i) const
Compute the grid coordinate for given index in x2 direction.
virtual bool get_scaling_parameters(Number &obj_scaling, bool &use_x_scaling, Index n, Number *x_scaling, bool &use_g_scaling, Index m, Number *g_scaling)
Method for returning scaling parameters.
virtual bool get_bounds_info(Index n, Number *x_l, Number *x_u, Index m, Number *g_l, Number *g_u)
Method to return the bounds for my problem.
Number x1_grid(Index i) const
Compute the grid coordinate for given index in x1 direction.
virtual Number y_d_cont(Number x1, Number x2) const =0
Target profile function for y.
Index pde_index(Index i, Index j) const
Translation of interior mesh point indices to the corresponding PDE constraint number.
virtual bool eval_grad_f(Index n, const Number *x, bool new_x, Number *grad_f)
Method to return the gradient of the objective.
Index N_
Number of mesh points in one dimension (excluding boundary)
MittelmannBndryCntrlDiriBase & operator=(const MittelmannBndryCntrlDiriBase &)
Number * y_d_
Array for the target profile for y.
void SetBaseParameters(Index N, Number alpha, Number lb_y, Number ub_y, Number lb_u, Number ub_u, Number d_const)
Method for setting the internal parameters that define the problem.
virtual bool eval_jac_g(Index n, const Number *x, bool new_x, Index m, Index nele_jac, Index *iRow, Index *jCol, Number *values)
Method to return: 1) The structure of the jacobian (if "values" is NULL) 2) The values of the jacobia...
Number ub_u_
overall upper bound on u
Index y_index(Index i, Index j) const
Translation of mesh point indices to NLP variable indices for y(x_ij)
virtual void finalize_solution(SolverReturn status, Index n, const Number *x, const Number *z_L, const Number *z_U, Index m, const Number *g, const Number *lambda, Number obj_valu, const IpoptData *ip_data, IpoptCalculatedQuantities *ip_cq)
This method is called after the optimization, and could write an output file with the optimal profile...
Number ub_y_
overall upper bound on y
virtual ~MittelmannBndryCntrlDiriBase()
Default destructor.
Number lb_y_
overall lower bound on y
MittelmannBndryCntrlDiriBase(const MittelmannBndryCntrlDiriBase &)
MittelmannBndryCntrlDiriBase()
Constructor.
Number alpha_
Weighting parameter for the control target deviation functional in the objective.
Number d_const_
Constant value of d appearing in elliptical equation.
virtual bool get_starting_point(Index n, bool init_x, Number *x, bool init_z, Number *z_L, Number *z_U, Index m, bool init_lambda, Number *lambda)
Method to return the starting point for the algorithm.
virtual bool get_nlp_info(Index &n, Index &m, Index &nnz_jac_g, Index &nnz_h_lag, IndexStyleEnum &index_style)
Method to return some info about the nlp.
virtual bool eval_f(Index n, const Number *x, bool new_x, Number &obj_value)
Method to return the objective value.
Number lb_u_
overall lower bound on u
virtual bool eval_g(Index n, const Number *x, bool new_x, Index m, Number *g)
Method to return the constraint residuals.
virtual bool eval_h(Index n, const Number *x, bool new_x, Number obj_factor, Index m, const Number *lambda, bool new_lambda, Index nele_hess, Index *iRow, Index *jCol, Number *values)
Method to return: 1) The structure of the hessian of the lagrangian (if "values" is NULL) 2) The valu...
Class implemented the NLP discretization of.
SolverReturn
enum for the return from the optimize algorithm (obviously we need to add more)
int Index
Type of all indices of vectors, matrices etc.
Definition IpTypes.hpp:19
double Number
Type of all numbers.
Definition IpTypes.hpp:17