from __future__ import print_function, division, absolute_import
from collections import defaultdict
import datetime
import logging
import uuid
from tornado import gen
import tornado.queues
from .client import Future, _get_global_client, Client
from .utils import tokey, sync, thread_state
from .worker import get_client
logger = logging.getLogger(__name__)
class QueueExtension(object):
""" An extension for the scheduler to manage queues
This adds the following routes to the scheduler
* queue_create
* queue_release
* queue_put
* queue_get
* queue_size
"""
def __init__(self, scheduler):
self.scheduler = scheduler
self.queues = dict()
self.client_refcount = dict()
self.future_refcount = defaultdict(lambda: 0)
self.scheduler.handlers.update({
'queue_create': self.create,
'queue_put': self.put,
'queue_get': self.get,
'queue_qsize': self.qsize}
)
self.scheduler.stream_handlers.update({
'queue-future-release': self.future_release,
'queue_release': self.release,
})
self.scheduler.extensions['queues'] = self
def create(self, stream=None, name=None, client=None, maxsize=0):
if name not in self.queues:
self.queues[name] = tornado.queues.Queue(maxsize=maxsize)
self.client_refcount[name] = 1
else:
self.client_refcount[name] += 1
def release(self, stream=None, name=None, client=None):
if name not in self.queues:
return
self.client_refcount[name] -= 1
if self.client_refcount[name] == 0:
del self.client_refcount[name]
futures = self.queues[name]._queue
del self.queues[name]
self.scheduler.client_releases_keys(
keys=[d['value'] for d in futures if d['type'] == 'Future'],
client='queue-%s' % name
)
@gen.coroutine
def put(self, stream=None, name=None, key=None, data=None, client=None, timeout=None):
if key is not None:
record = {'type': 'Future', 'value': key}
self.future_refcount[name, key] += 1
self.scheduler.client_desires_keys(keys=[key], client='queue-%s' % name)
else:
record = {'type': 'msgpack', 'value': data}
if timeout is not None:
timeout = datetime.timedelta(seconds=(timeout))
yield self.queues[name].put(record, timeout=timeout)
def future_release(self, name=None, key=None, client=None):
self.future_refcount[name, key] -= 1
if self.future_refcount[name, key] == 0:
self.scheduler.client_releases_keys(keys=[key],
client='queue-%s' % name)
del self.future_refcount[name, key]
@gen.coroutine
def get(self, stream=None, name=None, client=None, timeout=None,
batch=False):
def process(record):
""" Add task status if known """
if record['type'] == 'Future':
record = record.copy()
key = record['value']
ts = self.scheduler.tasks.get(key)
state = ts.state if ts is not None else 'lost'
record['state'] = state
if state == 'erred':
record['exception'] = ts.exception_blame.exception
record['traceback'] = ts.exception_blame.traceback
return record
if batch:
q = self.queues[name]
out = []
if batch is True:
while not q.empty():
record = yield q.get()
out.append(record)
else:
if timeout is not None:
msg = ("Dask queues don't support simultaneous use of "
"integer batch sizes and timeouts")
raise NotImplementedError(msg)
for i in range(batch):
record = yield q.get()
out.append(record)
out = [process(o) for o in out]
raise gen.Return(out)
else:
if timeout is not None:
timeout = datetime.timedelta(seconds=timeout)
record = yield self.queues[name].get(timeout=timeout)
record = process(record)
raise gen.Return(record)
def qsize(self, stream=None, name=None, client=None):
return self.queues[name].qsize()
[docs]class Queue(object):
""" Distributed Queue
This allows multiple clients to share futures or small bits of data between
each other with a multi-producer/multi-consumer queue. All metadata is
sequentialized through the scheduler.
Elements of the Queue must be either Futures or msgpack-encodable data
(ints, strings, lists, dicts). All data is sent through the scheduler so
it is wise not to send large objects. To share large objects scatter the
data and share the future instead.
.. warning::
This object is experimental and has known issues in Python 2
Examples
--------
>>> from dask.distributed import Client, Queue # doctest: +SKIP
>>> client = Client() # doctest: +SKIP
>>> queue = Queue('x') # doctest: +SKIP
>>> future = client.submit(f, x) # doctest: +SKIP
>>> queue.put(future) # doctest: +SKIP
See Also
--------
Variable: shared variable between clients
"""
def __init__(self, name=None, client=None, maxsize=0):
self.client = client or _get_global_client()
self.name = name or 'queue-' + uuid.uuid4().hex
if self.client.asynchronous or getattr(thread_state, 'on_event_loop_thread', False):
self._started = self.client.scheduler.queue_create(name=self.name,
maxsize=maxsize)
else:
sync(self.client.loop, self.client.scheduler.queue_create,
name=self.name, maxsize=maxsize)
self._started = gen.moment
def __await__(self):
@gen.coroutine
def _():
yield self._started
raise gen.Return(self)
return _().__await__()
@gen.coroutine
def _put(self, value, timeout=None):
if isinstance(value, Future):
yield self.client.scheduler.queue_put(key=tokey(value.key),
timeout=timeout,
name=self.name)
else:
yield self.client.scheduler.queue_put(data=value,
timeout=timeout,
name=self.name)
[docs] def put(self, value, timeout=None, **kwargs):
""" Put data into the queue """
return self.client.sync(self._put, value, timeout=timeout, **kwargs)
[docs] def get(self, timeout=None, batch=False, **kwargs):
""" Get data from the queue
Parameters
----------
timeout: Number (optional)
Time in seconds to wait before timing out
batch: boolean, int (optional)
If True then return all elements currently waiting in the queue.
If an integer than return that many elements from the queue
If False (default) then return one item at a time
"""
return self.client.sync(self._get, timeout=timeout, batch=batch,
**kwargs)
[docs] def qsize(self, **kwargs):
""" Current number of elements in the queue """
return self.client.sync(self._qsize, **kwargs)
@gen.coroutine
def _get(self, timeout=None, batch=False):
resp = yield self.client.scheduler.queue_get(timeout=timeout,
name=self.name,
batch=batch)
def process(d):
if d['type'] == 'Future':
value = Future(d['value'], self.client, inform=True,
state=d['state'])
if d['state'] == 'erred':
value._state.set_error(d['exception'], d['traceback'])
self.client._send_to_scheduler({'op': 'queue-future-release',
'name': self.name,
'key': d['value']})
else:
value = d['value']
return value
if batch is False:
result = process(resp)
else:
result = list(map(process, resp))
raise gen.Return(result)
@gen.coroutine
def _qsize(self):
result = yield self.client.scheduler.queue_qsize(name=self.name)
raise gen.Return(result)
def close(self):
if self.client.status == 'running': # TODO: can leave zombie futures
self.client._send_to_scheduler({'op': 'queue_release',
'name': self.name})
def __getstate__(self):
return (self.name, self.client.scheduler.address)
def __setstate__(self, state):
name, address = state
try:
client = get_client(address)
assert client.scheduler.address == address
except (AttributeError, AssertionError):
client = Client(address, set_as_default=False)
self.__init__(name=name, client=client)