dox

Manual for version 1.8.11

£, ¢

Written by Dimitri van Heesch

©1997-2019

Contents

1

2

2.1
2.2
2.3
2.4

User Manual

Introduction

Installation
Compiling fromsource on UNIX oo
Installing the binarieson UNIX
Compiling from source on Windows L

Installing the binarieson Windows e

3 Getting Started

3.1
3.2
3.3

3.4

Step 0: Check if doxygen supports your programming language
Step 1: Creating a configurationfile
Step 2: Running doxygen L e e e
3.3.1 HTMLoutput e e e
3.3.2 LaTeXoutput o e e e
3.3.3 RTFoutput e
3.3.4 XMLoutput e e e e
3.35 Manpageoutput e e e e e
3.3.6 DocBookoutput
Step 3: Documentingthe sources L

4 Documenting the code

4.1

4.2

Special commentblocks
4.1.1 Comment blocks for C-like languages (C/C++/C#/Objective-C/PHP/Java)
Putting documentation aftermemberso oL
Examples L
Documentation at otherplaces
4.1.2 Commentblocksin Python
4.1.3 Commentblocksin VHDL e
41.4 CommentblocksinFortran
415 CommentblocksinTcl e

Anatomy of acommentblock

© 00 0 N N

11
12
12
13
13
14
14
14
14
14
15

] CONTENTS
5 Markdown 31
5.1 Standard Markdown e 31
5.1.1 Paragraphs e e e 31

5.1.2 Headers e e e e 31

51.3 Blockquotes. 32

5.1.4 Lists e e 32

515 CodeBIlocks e 32

5.1.6 Horizontal Rulers 33

5.1.7 Emphasis e e e 33

5.1.8 €OAESPaANS e e e e e e e e 33

519 Links L 33

Inline Links L 33

Reference Links L 34

5110 Images e e e e e 34

5.1.11 AutomaticLinking e 35

5.2 Markdown Extensions 35
521 Tableof Contents e 35

5222 Tables 35

52.3 FencedCodeBlocks 36

5.24 HeaderId Attributes L 36

5.3 Doxygen specifics e 37
5.3.1 Including Markdown filesaspages 37

5.3.2 Treatmentof HTML blocks e 37

5.3.3 Code Block Indentation 37

5.3.4 Emphasislimits 38

5835 Code SpansLimits e e e 38

5.3.6 ListsExtensions e e e e 38

5.3.7 Useofasterisks e 39

5.3.8 Limitsonmarkupscope e e e e e 39

54 Debugging of problems L 40
6 Lists 41
7 Grouping 43
7.1 Modules e 43
7.2 Member Groups e e e 45
7.3 8Subpaging e 46
8 Including Formulas 49
9 Including Tables 51

Generated by Doxygen 1.8.11

CONTENTS]
10 Graphs and diagrams 53
11 Preprocessing 57
12 Automatic link generation 61
12.1 Linkstowebpagesand mailaddresses 61
122 Linkstoclasses 61
12.3 Linkstofiles e 61
124 Linkstofunctions 61
12,5 Linkstoothermembers L 62
12,6 typedefs L e 64
13 Output Formats 65
14 Searching 67
14.1 External Indexingand Searching 69
14.1.1 Introduction L e e e e e 69

14.1.2 Configuring e e 70

Single projectindex e e e e 71
Multiprojectindex L 71

14.1.3 Updatingtheindex e 72

14.1.4 Programminginterface 72
Indexerinputformat 72

Search URLformat 73
Searchresultsformat L 73

15 Customizing the Output 75
15.1 MinorTweaks L e 75
15.1.1 Overall Color e e 75

15.1.2 Navigation e e e e 75

15.1.3 Dynamic Content e e 76

15.1.4 Header, Footer, and Stylesheetchanges, 76

15.2 Changing the layoutofpages 77
15.3 Usingthe XML output e 80
16 Custom Commands 81
16.1 Simplealiases e 81
16.2 Aliases witharguments L 81
16.3 Nestingcustomcommand 82
17 Link to external documentation 83
18 Frequently Asked Questions 85

Generated by Doxygen 1.8.11

v CONTENTS
18.1 How to get information on the index page in HTML? 85
18.2 Help, some/all of the members of my class / file / namespace are not documented? 85
18.3 When | set EXTRACT_ALL to NO none of my functions are shown in the documentation. 86
18.4 My file with a custom extension is not parsed (properly) (anymore). 86
18.5 How can | make doxygen ignore some code fragment?, 86
18.6 How can | change what is after the <code>#include</code> in the class documentation? 86
18.7 How can | use tag files in combination with compressed HTML? 87
18.8 I don't like the quick index that is put above each HTML page, whatdoIdo? 87
18.9 The overall HTML output looks different, while | only wanted to use my own html header file 87
18.10 Why does doxygenuse Qt? e e e 87
18.11 How can | exclude all test directories from my directory tree? 88
18.12 Doxygen automatically generates a link to the class MyClass somewhere in the running text. How do |
prevent that at a certain place? L 88
18.13 My favorite programming language is X. Can I stilluse doxygen? 88
18.14 Help! | get the cryptic message "input buffer overflow, can't enlarge buffer because scanner uses
REJECT" . . . o e 88
18.15 When running make in the latex dir | get "TeX capacity exceeded". Now what? 88
18.16 Why are dependencies via STL classes not shown in the dot graphs? 88
18.17 | have problems getting the search engine to work with PHP5 and/or windows 89
18.18 Can | configure doxygen from the command line? 89
18.19 How did doxygen getits name? L 89
18.20 What was the reason to develop doxygen? 89
19 Troubleshooting 91
19.1 Known Problems e 91
19.2 HowtoHelp e 92
19.3 Howtoreportabug 92
Il Reference Manual 93
20 Features 95
21 Doxygen usage 97
21.1 Fine-tuningthe output L 97
22 Doxywizard usage 99
23 Configuration 105
231 Format e 105
23.2 Projectrelated configurationoptions L 107
23.3 Build related configurationoptions 112
23.4 Configuration options related to warning and progress messageso ... 115

Generated by Doxygen 1.8.11

CONTENTS Vv

23.5 Configuration options related to the inputfiles o 116
23.6 Configuration options related to source browsingo 118
23.7 Configuration options related to the alphabetical classindex 119
23.8 Configuration options related to the HTML output 119
23.9 Configuration options related to the LaTeX output 127
23.10 Configuration options related tothe RTFoutput 130
23.11 Configuration options related to the manpageoutput 130
23.12 Configuration options related to the XML output Lo 131
23.13 Configuration options related to the DOCBOOK output 131
23.14 Configuration options for the AutoGen Definitions output 132
23.15 Configuration options related to the Perl module output oL 132
23.16 Configuration options related to the preprocessor Lo 132
23.17 Configuration options related to external referenceso Lo oL 133
23.18 Configuration options related to the dottool Lo 134
23.19 Examples e e 138
24 Special Commands 141
241 Introduction L L e e 141
24.2 \addtogroup <name> [(title)] 142
24.3 \callgraph 143
24.4 \hidecallgraph L e 143
245 \callergraph e 144
24.6 \hidecallergraph L e 144
24.7 \category <name> [<header-file>] [<header-name>] 144
24.8 \class <name> [<header-file>] [<header-name>] oL 144
249 \def <name> L e e 145
24.10 \defgroup <name> (groupftitle) 145
2411 \dir[<path fragment>]. L 145
2412 \enuUmM <NAME>> o v v e e e e e e e e e e e e e e e e 145
2413 \example <file-name> L L e 146
2414 \endinternal L L 147
2415 \extends <nNamMe>> L e e e 147
2416 Mile[<name>] 147
2417 \fn (function declaration) L 147
24.18 \headerfile <header-file> [<header-name>] oL 148
2419 \hideinitializer L 149
24.20 \idlexcept <name> L L e e e e 149
24.21 \implements <name> L. L L e e 149
24.22 \ingroup (<groupname> [<groupname> <groupname>]) 149
24.23 \interface <name> [<header-file>] [<header-name>] 149

Generated by Doxygen 1.8.11

\'/l CONTENTS
24.24 \internal . . . L L L 150
24.25 \mainpage [(title)] o 150
24.26 \memberof <name> L 150
24.27 \name [(header)] e 151
24.28 \namespace <NAME>> v v v v v i e e e e e e e e e e e 151
24.29 \nOSUDQrOUPING . .« « o v o v e e e e e e e e e 151
24.30 \overload [(function declaration)] L 151
24.31 \package <name>> e e e e e e e 152
24.32 \page <name> (fitle) 152
2433 \private e e e e 152
24.34 \privatesection e e 153
24.35 \property (qualified property name) L 153
24.36 \protected L 153
24.37 \protectedsection e 153
24.38 \protocol <name> [<header-file>] [<header-name>] 154
24.39 \public 154
24.40 \publicseCtion L e e 154
2441 \DUME L 154
24.42 \relates <name>> L L e e 154
24.43 \related <name> L 155
24.44 \relatesalso <name>> L L e e 155
24.45 \relatedalso <name> L L 155
24.46 \showinitializer 155
2447 \StaliC. e 155
24.48 \struct <name> [<header-file>] [<header-name>] 156
24.49 \typedef (typedef declaration) L 156
24.50 \union <name> [<header-file>][<header-name>] 156
24.51 \var (variable declaration) 156
24.52 \vhdlflow [(title for the flow chart)] 156
24.53 \weakgroup <name> [(title)] 156
24.54 \attention { attentiontext} L 157
24.55 \author {listof authors} 157
2456 \authors{listof authors} L 157
24.57 \brief { brief description} L 157
2458 \bug {bugdescription} 157
24.59 \cond [(section-label)] L 158
24.60 \copyright { copyright description} 158
24.61 \date {datedescription} 159
24.62 \deprecated {description} 159
24.63 \details { detailed description} 159

Generated by Doxygen 1.8.11

CONTENTS Vi

24.64 \elseo 159
24.65 \elseif (section-label) 159
24.66 \endcond e e e 159
24.67 \endif 159
24.68 \exception <exception-object> { exception description} Lo 160
24.69 \if (section-label) e e 160
24.70 \ifnot (section-label) 161
24.71 \invariant { description of invariant} L 161
24.72 \note {text} L e 161
24.73 \par [(paragraph title)] { paragraph } Lo 161
24.74 \param [(dir)] <parameter-name> { parameter description}o 162
24.75 \parblock 162
24.76 \endparblock L e e 163
24.77 \tparam <template-parameter-name> { description} Lo 163
24.78 \post { description of the postcondition} L 163
24.79 \pre { description of the precondition} L 163
24.80 \remark {remarktext} L 163
24.81 \remarks {remarktext} L 163
24.82 \result { description of theresultvalue} L 163
24.83 \return {description of thereturnvalue}. 164
24.84 \returns { description of thereturnvalue} L 164
24.85 \retval <returnvalue> {description} 164
24.86 \sa{references} 164
24.87 \see{references} 164
24.88 \short {shortdescription} L 164
24.89 \since {text} L 164
24.90 \test { paragraph describingatestcase} Lo 165
24.91 \throw <exception-object> { exception description} 165
24.92 \throws <exception-object> { exception description} 165
24.93 \todo { paragraph describing whatistobedone} Lo oL 165
24.94 \version {versionnumber} L L 165
24.95 \warning {warningmessage } e e 165
24.96 \xrefitem <key> "(heading)" "(listtitle)" {text}o 166
24.97 \addindex (text) e 166
24.98 \anchor <word> L L e 166
24.99 \cite <label> L 167
24.100\endlink oL L L e e e 167
24.101\link <link-object> e 167
24.102\ref <name> ["(text)"] e 167
24.103\refitem <name> L L e e 167

Generated by Doxygen 1.8.11

Vil CONTENTS

24.104\secreflist L e 167
24.105\endsecreflist e 168
24.106\subpage <name> ["(text)"] 168
24107 \tableofcontents L 168
24.108\section <section-name> (sectiontitle)o L 168
24.109\subsection <subsection-name> (subsectiontitle) oo Lo 169
24.110\subsubsection <subsubsection-name> (subsubsectiontitle) 169
24.111\paragraph <paragraph-name> (paragraphtitle)o 169
24.112\dontinclude <file-name> L 169
24.113\include <file-name> L 170
24.114\includelineno <file-name> L L L 171
24115\line (pattern) e 171
24116\skip (pattern) e e e 171
24117 \skipline (pattern) L e 171
24.118\snippet <file-name> (block_id) 172
24 119\until (pattern) L e e 172
24.120\verbinclude <file-name> L L L 172
24.121\htmlinclude <file-name> L 172
24 122\latexinclude <file-name> L L L 173
24.123\a <WOMA>> o o e e e e e e 173
24.124\arg { item-description } L e e 173
24.125\0 <word> . . L L L L e e e e 174
24.126\C KWOIA>> L L e e e e e 174
24.127\code ['{'word>"}] . . . L e e 174
24.128\copydoc <link-object> L 175
24.129\copybrief <link-object> 175
24.130\copydetails <link-object> 175
24.131\docbookonly L e e 175
24.132\dot ["caption"] [<sizeindication>=<size>]o 175
24.133\msc ["caption"] [<sizeindication>=<size>] Lo 176
24.134\startuml [{file}] ["caption"] [<sizeindication>=<size>]o 177
24.135\doffile <file> ["caption"] [<sizeindication>=<size>] 178
24.136\mscfile <file> ["caption"] [<sizeindication>=<size>] Lo 178
24.137\diafile <file> ["caption"] [<sizeindication>=<size>] 178
24138\ KWOMA>> o e e e 179
24.139\em <WOrd>> o L e e 179
24.140\endcode e e e e 179
24.141\enddocbookonly L 179
24.142\enddot . . . L L L L 179
24.143\endmMSC e e 179

Generated by Doxygen 1.8.11

CONTENTS IX

24.144\enduml . . L 180
24.145\endhtmlonly L L e 180
24.146\endlatexonly L e e e 180
24 147\endmanonly oL L L e e e e 180
24.148\endrtfonly L L L e 180
24.149\endverbatim L L L L e 180
24.150\endxmlonly L L e e 180
24 151N . L e 181
24152\ . . L 181
24153\ . . L e e 181
24.154\H{environmentH{ L L e 181
24155\ . L L e e 181
24.156\htmlonly ["[block]™ e 181
24.157\image <format> <file> ["caption"] [<sizeindication>=<size>] 182
24.158\atexonlyo L e e 183
24.159\manonly e e e 183
24.160\li {item-description } L e 183
24161\ . . L 184
24.162\D <WOrd>> o o L e e 184
24.163\rtfonly . . . oL L 184
24.164\verbatim L e 184
24.165\xmlonly . . . L e 184
24166\ . . L e e e 185
24167\@ 185
24.168\~[Languageld] 185
24169\& . . . L 185
241700\ . . L e 185
24471ME . L L 185
24072 \< L L e e e 185
24173\> L L 185
24174\ \% . . . e e e 186
24175\ 186
24176\, . . e e 186
24077\ L o 186
24178\ . L e 186
24179\- . L 186
241800\ . L e 186
25 HTML commands 189
26 XML commands 199

Generated by Doxygen 1.8.11

X CONTENTS
Il Developers Manual 201
27 Doxygen’s internals 203
28 Perl Module Output format 207
281 USAQE 207
28.2 Usingthe LaTeX generator. 0 207
28.2.1 Creationof PDFand DVloutput 208

28.3 Documentationformat. 209
28.4 Datastructure 209
29 Internationalization 211
Appendices 217

A Autolink Example 219
AA Class Documentation L 219
A.1.1 Autolink_Test Class Reference e 219
Detailed Description e 219

Member Enumeration Documentation L L Lo o 220

Constructor & Destructor Documentation o oo 220

Member Function Documentation L 220

A2 File Documentation e 220
A.2.1 autolink.cpp File Reference e 220
Detailed Description 221

Macro Definition Documentation L L 221

Typedef Documentation L 221

Enumeration Type Documentation L 221

Variable Documentation L 222

B Resolving Typedef Example 223
B.1 Class Documentation 223
B.1.1 CoordStruct Struct Reference 223
Detailed Description e 223

Member Data Documentation. 223

B.2 File Documentation e 223
B.2.1 restypedef.cpp File Reference 223
Detailed Description e 224

Typedef Documentation 224

Function Documentation 224

C Diagrams Example 225

Generated by Doxygen 1.8.11

CONTENTS Xi

C.1 Class Documentation e 225
C.1.1 AClassReference 225
Member Data Documentation. 226

C.1.2 BClassReference 226
Member Data Documentation. 227

C.1.3 CClassReference 227
Member Data Documentation. 227

C.1.4 DClassReference 228
Member Data Documentation. 229

C.1.5 ECIlassReference 229

C.2 FileDocumentation 231
C.2.1 diagrams_a.hFileReference 231

C.2.2 diagrams_b.h File Reference 231

C.2.3 diagrams_c.h FileReference 232

C.2.4 diagrams_d.h File Reference 232

C.2.5 diagrams_e.hFileReference 233

D Modules Example 235
D.1 Module Documentation e 235
D.1.1 The FirstGroup o o o e e 235
Detailed Description 236

D.1.2 TheSecond Group o o it i e e 237
Detailed Description 237

D.1.3 TheThird Group o o o e e e e e e 238
Detailed Description 238

D.1.4 TheFourthGroup e 239
Detailed Description e 239

D.1.5 TheFifthGroup e e 240

D.2 Namespace Documentation 241
D.2.1 N1 Namespace Reference 241
Detailed Description 241

D.3 Class Documentation e 241
D.3.1 CiClassReference 241
Detailed Description e 241

D.3.2 C2ClassReference 241
Detailed Description e e 241

D.3.3 C3ClassReference e 241
Detailed Description e 241

D.3.4 C4ClassReference e 242
Detailed Description 242

Generated by Doxygen 1.8.11

Xi CONTENTS

D.3.5 C5ClassReference e 242
Detailed Description 242

D.4 File Documentation e e 242
D.4.1 group.cpp File Reference 242
Detailed Description e 243

E Member Groups Example 245
E.1 Class Documentation e 245
E.1.1 Memgrp_TestClass Reference 245
Detailed Description 245

Member Function Documentation 245

E.2 File Documentation e 246
E.2.1 memgrp.cpp File Reference 246
Detailed Description 246

Macro Definition Documentationo 246

Function Documentation 246

F After Block Example 247
FA Class Documentation L 247
F1.1 Afterdoc_TestClass Reference i 247
Detailed Description e e 247

Member Enumeration Documentation L L Lo o 247

Member Data Documentation. L 248

G QT Style Example 249
G.1 Class Documentation e 249
G.1.1 QTstyle_TestClass Reference it i 249
Detailed Description 249

Member Enumeration Documentation L Lo 250

Constructor & Destructor Documentation. oL 250

Member Function Documentation 250

Member Data Documentation. 251

H Javadoc Style Example 253
H.A1 Class Documentation L e 253
H.1.1 Javadoc TestClass Reference, 253
Detailed Description e e 253

Member Enumeration Documentation L L o 254

Constructor & Destructor Documentation. L oL 254

Member Function Documentation 254

Member Data Documentation. 255

Generated by Doxygen 1.8.11

CONTENTS X

| Structural Commands Example 257
1.1 File Documentation 257
I.1.1 structcmd.h File Reference 257
Detailed Description 257

Macro Definition Documentation L 258

Typedef Documentation L 258

Function Documentation 258

Variable Documentation 258

J Python Docstring Example 261
J.1 Namespace Documentation L e 261
J.1.1 docstring Namespace Reference L 261
Detailed Description e 261

Function Documentation L 261

J.2 Class Documentation e 261
J.2.1 docstring.PyClass Class Reference 261
Detailed Description 262

Constructor & Destructor Documentationo oo, 262

Member Function Documentation 262

J.3 File Documentation 262
J.3.1 docstring.py File Reference 262

K Python Example 263
K.1 Namespace Documentation L 263
K.1.1 pyexample Namespace Reference, 263
Detailed Description 263

Function Documentation L 263

K.2 Class Documentation e 263
K.2.1 pyexample.PyClass Class Reference 263
Detailed Description 264

Constructor & Destructor Documentation.o oL 264

Member Function Documentation L 264

Member Data Documentation. 264

L VHDL Example 265
L.1 Class Documentation e 265
L.1.1 behavior Architecture Reference 265
Detailed Description 265

L.1.2 mux_using_with Entity Referenceo 265
Detailed Description 266

L.2 File Documentation e 266

Generated by Doxygen 1.8.11

Xiv CONTENTS

L.2.1 mux.vhdl File Reference

Detailed Description e

M Tcl Example
M.1 Namespace Documentation
M.1.1 ns Namespace Reference L
Detailed Description
Function Documentation
M.2 Class Documentation e e e
M.2.1 ns:itcl_class Class Reference
Detailed Description
Member Function Documentation
M.2.2 ns:oo classClassReference e
Detailed Description e
Constructor & Destructor Documentation o oo
Member Function Documentation
Member Data Documentation.
M.3 File Documentation L e e e e
M.3.1 tclexample.icl File Reference
Detailed Description e

Function Documentation

N Class Example

N.1 Class Documentation e e e
N.1.1 TestClass Reference @
Detailed Description L

O Define Example

0.1 File Documentation
O.1.1 define.h File Reference
Detailed Description

Macro Definition Documentation L

P Enum Example

P.1 Class Documentation e
P1.1 Enum_TestClass Reference
Detailed Description

Member Enumeration Documentation L o

Q Example Example
Q.1 Class Documentation e

Q.1.1 Example_TestClass Reference

273
273
273
273

275
275
275
275
275

277
277
277
277
277

Generated by Doxygen 1.8.11

CONTENTS XV

Detailed Description e 279

Member Function Documentation 279

Q.2 Example Documentation 279
Q.21 example_test.cpp 279

R Extends/Implements Example 281
R.1 Class Documentation L 281
R.1.1 Car Struct Reference 281
Detailed Description 282

R.1.2 Object Struct Reference e 282
Detailed Description 283

Member Function Documentation 283

R.1.3 Truck Struct Reference e 283
Detailed Description e 284

R.1.4 Vehicle Struct Reference e 285
Detailed Description 286

Member Function Documentation 286

R.2 File Documentation e e 286
R.2.1 manual.c File Reference 286
Function Documentation L 286

S File Example 287
SA File Documentation 287
S.1.1 filehFileReference 287
Detailed Description 287

Variable Documentation L 287

T Fn Example 289
TA Class Documentation 289
T11 Fn_TestClass Reference e 289
Detailed Description 289

Member Function Documentation 289

U Overload Example 291
U.1 Class Documentation e 291
U.1.1 Overload TestClass Reference 291
Detailed Description 291

Member Function Documentation 291

V Page Example 293
VA Adocumentation page e e 293
V.11 Anexample section L 293

Generated by Doxygen 1.8.11

XVI CONTENTS

Thefirstsubsection 293

The second subsection 293

V.2 Anotherpage 293
W Relates Example 295
W.1 Class Documentation e e 295
W.1.1 String Class Reference e 295
Detailed Description 295

Friends And Related Function Documentation 295

X Author Example 297
X1 Bug List 297
X.2 Class Documentation e 297
X.2.1 SomeNiceClass Class Reference 297
Detailed Description e 297

Y Par Example 299
YA Class Documentation 299
Y11 Par TestClassReference e 299
Detailed Description e 299

Z Include Example 301
ZA example . . .o 301
Z.2 Class Documentation e 301
Z.2.1 Include TestClass Reference. @ i i i e 301
Detailed Description 301

Generated by Doxygen 1.8.11

Part |

User Manual

Chapter 1

Introduction

Introduction

Doxygen is the de facto standard tool for generating documentation from annotated C++ sources, but it also supports
other popular programming languages such as C, Objective-C, C#, PHP, Java, Python, IDL (Corba, Microsoft, and
UNO/OpenOffice flavors), Fortran, VHDL, Tcl, and to some extent D.

Doxygen can help you in three ways:

1. It can generate an on-line documentation browser (in HTML) and/or an off-line reference manual (in IATEX)
from a set of documented source files. There is also support for generating output in RTF (MS-Word), Post«
Script, hyperlinked PDF, compressed HTML, and Unix man pages. The documentation is extracted directly
from the sources, which makes it much easier to keep the documentation consistent with the source code.

2. You can configure doxygen to extract the code structure from undocumented source files. This is very useful
to quickly find your way in large source distributions. Doxygen can also visualize the relations between the
various elements by means of include dependency graphs, inheritance diagrams, and collaboration diagrams,
which are all generated automatically.

3. You can also use doxygen for creating normal documentation (as | did for the doxygen user manual and

web-site).

Doxygen is developed under Mac OS X and Linux, but is set-up to be highly portable. As a result, it runs on most
other Unix flavors as well. Furthermore, executables for Windows are available.

This manual is divided into three parts, each of which is divided into several sections.

The first part forms a user manual:

+ Section Installation discusses how to download, compile and install doxygen for your platform.
+ Section Getting started tells you how to generate your first piece of documentation quickly.
 Section Documenting the code demonstrates the various ways that code can be documented.

+ Section Markdown support show the Markdown formatting supported by doxygen.

« Section Lists shows how to create lists.

+ Section Grouping shows how to group things together.

+ Section Including formulas shows how to insert formulas in the documentation.

+ Section Graphs and diagrams describes the diagrams and graphs that doxygen can generate.

http://www.doxygen.org/download.html

4 Introduction

 Section Preprocessing explains how doxygen deals with macro definitions.

+ Section Automatic link generation shows how to put links to files, classes, and members in the documentation.
« Section Output Formats shows how to generate the various output formats supported by doxygen.

+ Section Searching shows various ways to search in the HTML documentation.

 Section External Indexing and Searching shows how use the external search and index tools

+ Section Customizing the output explains how you can customize the output generated by doxygen.

+ Section Custom Commands show how to define and use custom commands in your comments.

+ Section Linking to external documentation explains how to let doxygen create links to externally generated
documentation.

« Section Frequently Asked Questions gives answers to frequently asked questions.

+ Section Troubleshooting tells you what to do when you have problems.

The second part forms a reference manual:

+ Section Features presents an overview of what doxygen can do.

+ Section Doxygen usage shows how to use the doxygen program.

+ Section Doxywizard usage shows how to use the doxywizard program.

 Section Configuration shows how to fine-tune doxygen, so it generates the documentation you want.

« Section Special Commands shows an overview of the special commands that can be used within the docu-
mentation.

» Section HTML Commands shows an overview of the HTML commands that can be used within the documen-
tation.

» Section XML Commands shows an overview of the C# style XML commands that can be used within the
documentation.

The third part provides information for developers:

» Section Doxygen's Internals gives a global overview of how doxygen is internally structured.
+ Section Perl Module Output shows how to use the PerlMod output.

« Section Internationalization explains how to add support for new output languages.

Doxygen license

Copyright © 1997-2015 by Dimitri van Heesch.

Permission to use, copy, modify, and distribute this software and its documentation under the terms of the GNU
General Public License is hereby granted. No representations are made about the suitability of this software for any
purpose. It is provided "as is" without express or implied warranty. See the GNU General Public License
for more details.

Documents produced by doxygen are derivative works derived from the input used in their production; they are not
affected by this license.

Generated by Doxygen 1.8.11

mailto:dimitri@stack.nl
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

User examples

Doxygen supports a number of output formats where HTML is the most popular one. I've gathered some nice
examples of real-life projects using doxygen.

These are part of alarger 1ist of projects that use doxygen. If you know other projects, let me know and
I'll add them.

Future work

Although doxygen is successfully used by large number of companies and open source projects already, there is
always room for improvement.

You can submit enhancement requests in the bug tracker. Make sure the severity of the bug report is set to
"enhancement”.

Acknowledgments
Thanks go to:

» Malte Zéckler and Roland Wunderling, authors of DOC++. The first version of doxygen borrowed some code
of an old version of DOC++. Although | have rewritten practically all code since then, DOC++ has still given
me a good start in writing doxygen.

« All people at Qt Software, for creating a beautiful GUI Toolkit (which is very useful as a Windows/Unix platform
abstraction layer :-)

» My brother Frank for rendering the logos.

« Harm van der Heijden for adding HTML help support.

» Wouter Slegers of Your Creative Solutions for registering the www.doxygen.org domain.
 Parker Waechter for adding the RTF output generator.

+ Joerg Baumann, for adding conditional documentation blocks, PDF links, and the configuration generator.

 Tim Mensch for adding the todo command.

Christian Hammond for redesigning the web-site.

» Ken Wong for providing the HTML tree view code.

Talin for adding support for C# style comments with XML markup.

Petr Prikryl for coordinating the internationalization support. All language maintainers for providing transla-
tions into many languages.

* The band Porcupine Tree for providing hours of great music to listen to while coding.

* many, many others for suggestions, patches and bug reports.

Generated by Doxygen 1.8.11

http://www.doxygen.org/results.html
http://www.doxygen.org/results.html
http://www.doxygen.org/projects.html
mailto:dimitri@stack.nl?subject=New%20project%20using%20Doxygen
https://bugzilla.gnome.org/buglist.cgi?product=doxygen&bug_status=UNCONFIRMED&bug_status=NEW&bug_status=ASSIGNED&bug_status=REOPENED&bug_severity=enhancement
http://www.yourcreativesolutions.nl
http://www.porcupinetree.com

Introduction

Generated by Doxygen 1.8.11

Chapter 2

Installation

First go to the down1oad page to get the latest distribution, if you have not downloaded doxygen already.

2.1 Compiling from source on UNIX

If you downloaded the source distribution, you need at least the following to build the executable:

» The GNU tools flex, bison, libiconv and GNU make, and strip

* In order to generate a Makefile for your platform, you need cmake version 2.8.12 or later.

To take full advantage of doxygen's features the following additional tools should be installed.
+ Qt Software's GUI toolkit Ot version 4.3 or higher (but currently, Qt 5.x is not yet supported). This is needed
to build the GUI front-end doxywizard.
+ A IATEX distribution: for instance TeX Live This is needed for generating IATEX, Postscript, and PDF output.

* the Graph visualization toolkit version 1.8.10 or higher Needed for the include
dependency graphs, the graphical inheritance graphs, and the collaboration graphs. If you compile graphviz
yourself, make sure you do include freetype support (which requires the freetype library and header files),
otherwise the graphs will not render proper text labels.

» For formulas in the HTML output (when MathJax is not used) or in case you do not wish to use ‘pdflatex, the
ghostscript interpreter is needed. You can find it at www . ghostscript.com.

Compilation is now done by performing the following steps:

1. Unpack the archive, unless you already have done that:

gunzip doxygen—-$VERSION.src.tar.gz # uncompress the archive
tar xf doxygen-$VERSION.src.tar # unpack it

2. Create a build directory (for instance inside the source tree)

cd doxygen—-$VERSION
mkdir build

3. Run cmake with the makefile generator

cmake -G "Unix Makefiles" ..

cmake tries to determine the platform you use, and will look for the requires tools. It will report if something
is missing.
If you have Qt-4.3 or higher installed and want to build the GUI front-end, you should enable it as follows:

http://www.doxygen.org/download.html
ftp://prep.ai.mit.edu/pub/gnu/
http://www.cmake.org/
http://qt-project.org/
http://www.tug.org/interest.html#free
http://www.graphviz.org/
http://www.ghostscript.com/

8 Installation

cmake -Dbuild_wizard=YES
For an overview of other configuration options use
cmake -L

4. Compile the program by running make:

make

The program should compile without problems and the binaries (doxygen and optionally doxywizard)
should be available in the bin directory within the build directory.

5. Optional: Generate the user manual.

cmake -Dbuild_doc=YES
make docs

To let doxygen generate the HTML and PDF documentation.

The HTML directory within the build directory will now contain the html documentation (just point a HTML
browser to the file index.html in the html directory).

2.2 Installing the binaries on UNIX

After the compilation of the source code do a make install to install doxygen. If you downloaded the binary
distribution for UNIX, type:

./configure
make install

Binaries are installed into the directory <prefix>/bin. Use make install_docs to install the documen-
tation and examples into <docdir>/doxygen.

<prefix> defaults to /usr/local but can be changed with the ——prefix option of the configure script.
The default <docdir> directory is <prefix>/share/doc/packages and can be changed with the
—-docdir option of the configure script.

Alternatively, you can also copy the binaries from the bin directory manually to some bin directory in your search
path. This is sufficient to use doxygen.

Note
You need the GNU install tool for this to work (it is part of the coreutils package). Other install tools may put
the binaries in the wrong directory!

If you have a RPM or DEP package, then please follow the standard installation procedure that is required for these
packages.

2.3 Compiling from source on Windows

From version 1.8.10 onwards, build files need to be generated by cmake. cmake can be downloaded from http«
://www.cmake.org/download/

At the moment only the express version of Visual Studio 2013 is tested, but other version might also work.
Alternatively, you can compile doxygen the UNIX way using Cygwin or MinGW.

The next step is to install modern versions of bison and flex (see http://sourceforge.«
net/projects/winflexbison. Afterinstallation and adding them to your path rename win_flex.exe
to flex.exe and win_bison.exe to bison.exe) Furthermore you have to install python (version 2.6 or
higher, see http://www.python.org). These packages are needed during the compilation process.

Download doxygen's source tarball and put it somewhere (e.g. use c: \tools)
Now start a visual studio native command shell (for either x86 or x64) and type

Generated by Doxygen 1.8.11

http://www.cmake.org/download/
http://www.cmake.org/download/
http://en.wikipedia.org/wiki/Cygwin
http://www.mingw.org/
http://sourceforge.net/projects/winflexbison
http://sourceforge.net/projects/winflexbison
http://www.python.org

2.4 Installing the binaries on Windows 9

cd c:\tools
tar zxvf doxygen-x.y.z.src.tar.gz

to unpack the sources (you can obtain tar frome.g. http://gnuwin32.sourceforge.net /packages.«
html). Alternatively you can use an unpack program, like 7-Zip (see http://www.7-zip.org) or use the
build in unpack feature of modern Windows systems).

Now your environment is setup to generate the required project files for doxygen.
cd into the doxygen—x. y . z directory, create and cd to a build directory

mkdir build
cd build
cmake -G "Visual Studio 12 2013"

Note that compiling Doxywizard currently requires Qt version 4 (see http://gt-project.org/).

Also read the next section for additional tools you may need to install to run doxygen with certain features enabled.

2.4 Installing the binaries on Windows

Doxygen comes as a self-installing archive, so installation is extremely simple. Just follow the dialogs.

After installation it is recommended to also download and install GraphViz (version 2.20 or better is highly recom-
mended). Doxygen can use the dot tool of the GraphViz package to render nicer diagrams, see the HAVE_DOT
option in the configuration file.

If you want to produce compressed HTML files (see GENERATE_HTMLHELP) in the config file, then you need the
Microsoft HTML help workshop. You can download it from Microsoft.

If you want to produce Qt Compressed Help files (see QHG_LOCATION) in the config file, then you need ghelp-
generator which is part of Qt. You can download Qt from Ot Software Downloads.

In order to generate PDF output or use scientific formulas you will also need to install LaTeX and Ghostscript.
For IATEX a number of distributions exists. Popular ones that should work with doxygen are MikTex and proTeXt.
Ghostscript can be downloaded from Sourceforge.

After installing IATEX and Ghostscript you'll need to make sure the tools latex.exe, pdflatex.exe, and gswin32c.exe are
present in the search path of a command box. Follow t he se instructions if you are unsure and run the commands
from a command box to verify it works.

Generated by Doxygen 1.8.11

http://gnuwin32.sourceforge.net/packages.html
http://gnuwin32.sourceforge.net/packages.html
http://www.7-zip.org
http://qt-project.org/
http://www.microsoft.com/en-us/download/details.aspx?id=21138
http://qt-project.org/downloads
http://en.wikipedia.org/wiki/LaTeX
http://en.wikipedia.org/wiki/Ghostscript
http://www.miktex.org
http://www.tug.org/protext/
http://sourceforge.net/projects/ghostscript/
http://www.computerhope.com/issues/ch000549.htm

10

Installation

Generated by Doxygen 1.8.11

Chapter 3

Getting Started

The executable doxygen is the main program that parses the sources and generates the documentation. See
section Doxygen usage for more detailed usage information.

Optionally, the executable doxywizard can be used, which is a graphical front-end for editing the configuration
file that is used by doxygen and for running doxygen in a graphical environment. For Mac OS X doxywizard will be
started by clicking on the Doxygen application icon.

The following figure shows the relation between the tools and the flow of information between them (it looks complex
but that's only because it tries to be complete):

—
Doxywizard E Your application custom
d output
rea ;
generate/edit XML files doxmlparser lib -
Config file]
Layout file Doxyfile
make ps postscript
L fil
generate generate atex tiles latex
read update + L .
Makefile make pdf PDF
read Il
Sources Doxygen
|H read
read generate
; Man pages
Custom pag

— headers i
— footers Tag file(s) e ‘
— images |||/ A ! Windows only !
= I I
I I
import | doc
refman.rtf T MS-Word .
I I
HTML read | chm !
pages : HTML Help Workshop — 3

Figure 3.1: Doxygen information flow

12 Getting Started

3.1 Step 0: Check if doxygen supports your programming language

First, assure that your programming language has a reasonable chance of being recognized by Doxygen. These
languages are supported by default: C, C++, C#, Objective-C, IDL, Java, VHDL, PHP, Python, Tcl, Fortran, and
D. It is possible to configure certain file type extensions to use certain parsers: see the Configuration/Extension«
Mappings for details. Also, completely different languages can be supported by using preprocessor programs: see
the Helpers page for details.

3.2 Step 1: Creating a configuration file

Doxygen uses a configuration file to determine all of its settings. Each project should get its own configuration file.
A project can consist of a single source file, but can also be an entire source tree that is recursively scanned.

To simplify the creation of a configuration file, doxygen can create a template configuration file for you. To do this
call doxygen from the command line with the —g option:

doxygen -g <config-file>

where <config-file> is the name of the configuration file. If you omit the file name, a file named Doxyfile will
be created. If a file with the name <config-file> already exists, doxygen will rename it to <config-file>.bak before
generating the configuration template. If you use — (i.e. the minus sign) as the file name then doxygen will try to
read the configuration file from standard input (st din), which can be useful for scripting.

The configuration file has a format that is similar to that of a (simple) Makefile. It consists of a number of assignments
(tags) of the form:

TAGNAME = VALUE or
TAGNAME = VALUE1l VALUE2

You can probably leave the values of most tags in a generated template configuration file to their default value. See
section Configuration for more details about the configuration file.

If you do not wish to edit the config file with a text editor, you should have a look at doxywizard, which is a GUI
front-end that can create, read and write doxygen configuration files, and allows setting configuration options by
entering them via dialogs.

For a small project consisting of a few C and/or C++ source and header files, you can leave INPUT tag empty and
doxygen will search for sources in the current directory.

If you have a larger project consisting of a source directory or tree you should assign the root directory or directories
to the INPUT tag, and add one or more file patterns to the FILE_PATTERNS tag (for instance *.cpp *.h). Only
files that match one of the patterns will be parsed (if the patterns are omitted a list of typical patterns is used for the
types of files doxygen supports). For recursive parsing of a source tree you must set the RECURSIVE tag to YES.
To further fine-tune the list of files that is parsed the EXCLUDE and EXCLUDE_PATTERNS tags can be used. To
omit all test directories from a source tree for instance, one could use:

EXCLUDE_PATTERNS = */test/x*

Doxygen looks at the file's extension to determine how to parse a file, using the following table:

Extension | Language

.idl | IDL
.ddl | IDL
.odl | IDL

Jjava | Java
.cs | C#

d|D
.php | PHP

Generated by Doxygen 1.8.11

http://www.doxygen.org/helpers.html

3.3 Step 2: Running doxygen

13

Extension | Language
.php4 | PHP
.php5 | PHP
.inc | PHP
.phtml | PHP
.m | Objective-C
.M | Objective-C
.mm | Objective-C
.py | Python
.f | Fortran
for | Fortran
.f90 | Fortran
.vhd | VHDL
.vhdl | VHDL
el | TCL
.ucf | VHDL
.gsf | VHDL
.md | Markdown
.markdown | Markdown

Any other extension is parsed as if it is a C/C++ file.

If you start using doxygen for an existing project (thus without any documentation that doxygen is aware of), you
can still get an idea of what the structure is and how the documented result would look like. To do so, you must
set the EXTRACT_ALL tag in the configuration file to YES. Then, doxygen will pretend everything in your sources
is documented. Please note that as a consequence warnings about undocumented members will not be generated
as long as EXTRACT_ALL is setto YES.

To analyze an existing piece of software it is useful to cross-reference a (documented) entity with its definition in the
source files. Doxygen will generate such cross-references if you set the SOURCE_BROWSER tag to YES. It can
also include the sources directly into the documentation by setting INLINE_SOURCES to YES (this can be handy
for code reviews for instance).

3.3 Step 2: Running doxygen

To generate the documentation you can now enter:

doxygen <config-file>

Depending on your settings doxygen will create html, rt f, latex, xml, man, and/or docbook directories inside
the output directory. As the names suggest these directories contain the generated documentation in HTML, RTF,
IATEX, XML, Unix-Man page, and DocBook format.

The default output directory is the directory in which doxygen is started. The root directory to which the output is
written can be changed using the OUTPUT_DIRECTORY. The format specific directory within the output directory
can be selected using the HTML_OUTPUT, RTF_OUTPUT, LATEX_OUTPUT, XML_OUTPUT, MAN_OUTPUT,
and DOCBOOK_OUTPUT. tags of the configuration file. If the output directory does not exist, doxygen will try to
create it for you (but it will not try to create a whole path recursively, like mkdir -p does).

3.3.1 HTML output

The generated HTML documentation can be viewed by pointing a HTML browser to the index.html file in the
html directory. For the best results a browser that supports cascading style sheets (CSS) should be used (I'm
using Mozilla Firefox, Google Chrome, Safari, and sometimes IE8, IE9, and Opera to test the generated output).

Generated by Doxygen 1.8.11

14 Getting Started

Some of the features the HTML section (such as GENERATE_TREEVIEW or the search engine) require a browser
that supports Dynamic HTML and Javascript enabled.

3.3.2 LaTeX output

The generated IATEX documentation must first be compiled by a IATEX compiler (I use a recent teTeX distribution for
Linux and MacOSX and MikTex for Windows). To simplify the process of compiling the generated documentation,
doxygen writes a Makefile into the 1atex directory (on the Windows platform also a make .bat batch file is
generated).

The contents and targets in the Makefile depend on the setting of USE_PDFLATEX. If it is disabled (set to NO),
then typing make in the latex directory a dvi file called refman .dvi will be generated. This file can then be
viewed using xdvi or converted into a PostScript file refman . ps by typing make ps (this requires dvips).

To put 2 pages on one physical page use make ps_2onl instead. The resulting PostScript file can be send to a
PostScript printer. If you do not have a PostScript printer, you can try to use ghostscript to convert PostScript into
something your printer understands.

Conversion to PDF is also possible if you have installed the ghostscript interpreter; just type make pdf (ormake
pdf_2onl).

To get the best results for PDF output you should set the PDF_HYPERLINKS and USE_PDFLATEX tags to YES.
In this case the Makefile will only contain a target to build re fman . pdf directly.

3.3.3 RTF output

Doxygen combines the RTF output to a single file called refman.rtf. This file is optimized for importing into the
Microsoft Word. Certain information is encoded using so called fields. To show the actual value you need to select
all (Edit - select all) and then toggle fields (right click and select the option from the drop down menu).

3.3.4 XML output

The XML output consists of a structured "dump" of the information gathered by doxygen. Each compound (class/-
namespacef/file/...) has its own XML file and there is also an index file called index . xml.

A file called combine.xs1t XSLT script is also generated and can be used to combine all XML files into a single
file.

Doxygen also generates two XML schema files index.xsd (for the index file) and compound.xsd (for the
compound files). This schema file describes the possible elements, their attributes and how they are structured, i.e.
it the describes the grammar of the XML files and can be used for validation or to steer XSLT scripts.

In the addon/doxmlparser directory you can find a parser library for reading the XML output produced by
doxygen in an incremental way (see addon/doxmlparser/include/doxmlintf.h for the interface of the
library)

3.3.5 Man page output
The generated man pages can be viewed using the man program. You do need to make sure the man directory is

in the man path (see the MANPATH environment variable). Note that there are some limitations to the capabilities
of the man page format, so some information (like class diagrams, cross references and formulas) will be lost.

3.3.6 DocBook output

Doxygen can also generate output in the DocBook format. How to process the DocBook output is beyond the
scope of this manual.

Generated by Doxygen 1.8.11

http://www.docbook.org/

3.4 Step 3: Documenting the sources 15

3.4 Step 3: Documenting the sources

Although documenting the sources is presented as step 3, in a new project this should of course be step 1. Here |
assume you already have some code and you want doxygen to generate a nice document describing the API and
maybe the internals and some related design documentation as well.

If the EXTRACT_ALL option is set to NO in the configuration file (the default), then doxygen will only generate
documentation for documented entities. So how do you document these? For members, classes and namespaces
there are basically two options:

1. Place a special documentation block in front of the declaration or definition of the member, class or names-
pace. For file, class and namespace members it is also allowed to place the documentation directly after the
member.

See section Special comment blocks to learn more about special documentation blocks.

2. Place a special documentation block somewhere else (another file or another location) and put a structural
command in the documentation block. A structural command links a documentation block to a certain entity
that can be documented (e.g. a member, class, namespace or file).

See section Documentation at other places to learn more about structural commands.

The advantage of the first option is that you do not have to repeat the name of the entity.

Files can only be documented using the second option, since there is no way to put a documentation block before
a file. Of course, file members (functions, variables, typedefs, defines) do not need an explicit structural command;
just putting a special documentation block in front or behind them will work fine.

The text inside a special documentation block is parsed before it is written to the HTML and/or IATEX output files.

During parsing the following steps take place:

» Markdown formatting is replaced by corresponding HTML or special commands.

+ The special commands inside the documentation are executed. See section Special Commands for an
overview of all commands.

« If a line starts with some whitespace followed by one or more asterisks (x) and then optionally more whites-
pace, then all whitespace and asterisks are removed.

« All resulting blank lines are treated as a paragraph separators. This saves you from placing new-paragraph
commands yourself in order to make the generated documentation readable.

* Links are created for words corresponding to documented classes (unless the word is preceded by a %; then
the word will not be linked and the % sign is removed).

« Links to members are created when certain patterns are found in the text. See section Automatic link gener-
ation for more information on how the automatic link generation works.

+ HTML tags that are in the documentation are interpreted and converted to IKTEX equivalents for the IATEX
output. See section HTML Commands for an overview of all supported HTML tags.

Generated by Doxygen 1.8.11

16

Getting Started

Generated by Doxygen 1.8.11

Chapter 4

Documenting the code

This chapter covers two topics:

1. How to put comments in your code such that doxygen incorporates them in the documentation it generates.
This is further detailed in the next section.

2. Ways to structure the contents of a comment block such that the output looks good, as explained in section
Anatomy of a comment block.

4.1 Special comment blocks

A special comment block is a C or C++ style comment block with some additional markings, so doxygen knows it
is a piece of structured text that needs to end up in the generated documentation. The next section presents the
various styles supported by doxygen.

For Python, VHDL, Fortran, and Tcl code there are different commenting conventions, which can be found in sec-
tions Comment blocks in Python, Comment blocks in VHDL, Comment blocks in Fortran, and Comment blocks in
Tcl respectively.

4.1.1 Comment blocks for C-like languages (C/C++/C#/Objective-C/PHP/Java)

For each entity in the code there are two (or in some cases three) types of descriptions, which together form
the documentation for that entity; a brief description and detailed description, both are optional. For methods
and functions there is also a third type of description, the so called in body description, which consists of the
concatenation of all comment blocks found within the body of the method or function.

Having more than one brief or detailed description is allowed (but not recommended, as the order in which the
descriptions will appear is not specified).

As the name suggest, a brief description is a short one-liner, whereas the detailed description provides longer, more
detailed documentation. An "in body" description can also act as a detailed description or can describe a collection
of implementation details. For the HTML output brief descriptions are also used to provide tooltips at places where
an item is referenced.

There are several ways to mark a comment block as a detailed description:

1. You can use the JavaDoc style, which consist of a C-style comment block starting with two x's, like this:

/ x*
* ... text ...

*/

2. or you can use the Qt style and add an exclamation mark (!) after the opening of a C-style comment block,
as shown in this example:

18

Documenting the code

/%!
* ... text ...
x/

In both cases the intermediate x's are optional, so

/%!

. text ...
*/
is also valid.

. Athird alternative is to use a block of at least two C++ comment lines, where each line starts with an additional

slash or an exclamation mark. Here are examples of the two cases:

/]
/// ... text ...
/17

or

/7!
//V... text ...
//!

Note that a blank line ends a documentation block in this case.

. Some people like to make their comment blocks more visible in the documentation. For this purpose you can

use the following:

/**//**
* ... text

ek ok Kk Kk Kk ko ko kK kK kK kK Kk Kk Kk Kk ko ko ko ok ok kK kK ok Kk ok k ko

(note the 2 slashes to end the normal comment block and start a special comment block).
or
L1177 770777 77777777777 7777777777777777777777777777

/// ... text ...
[1177777177770707707777777777777777777777777777777777

For the brief description there are also several possibilities:

. One could use the \brief command with one of the above comment blocks. This command ends at the end of

a paragraph, so the detailed description follows after an empty line.

Here is an example:

/*! \brief Brief description.

* Brief description continued.
*

* Detailed description starts here.

*/

. If JAVADOC_AUTOBRIEF is set to YES in the configuration file, then using JavaDoc style comment blocks

will automatically start a brief description which ends at the first dot followed by a space or new line. Here is
an example:

/x* Brief description which ends at this dot. Details follow
* here.

*/

The option has the same effect for multi-line special C++ comments:

Generated by Doxygen 1.8.11

4.1 Special comment blocks 19

/// Brief description which ends at this dot. Details follow
/// here.

3. A third option is to use a special C++ style comment which does not span more than one line. Here are two
examples:

/// Brief description.
/** Detailed description. */

or

//! Brief description.

//! Detailed description
//! starts here.

Note the blank line in the last example, which is required to separate the brief description from the block
containing the detailed description. The JAVADOC_AUTOBRIEF should also be set to NO for this case.

As you can see doxygen is quite flexible. If you have multiple detailed descriptions, like in the following example:

//! Brief description, which is
//! really a detailed description since it spans multiple lines.
/*! Another detailed description!

*/

They will be joined. Note that this is also the case if the descriptions are at different places in the code! In this case
the order will depend on the order in which doxygen parses the code.

Unlike most other documentation systems, doxygen also allows you to put the documentation of members (including
global functions) in front of the definition. This way the documentation can be placed in the source file instead of the
header file. This keeps the header file compact, and allows the implementer of the members more direct access to
the documentation. As a compromise the brief description could be placed before the declaration and the detailed
description before the member definition.

Putting documentation after members

If you want to document the members of a file, struct, union, class, or enum, it is sometimes desired to place the
documentation block after the member instead of before. For this purpose you have to put an additional < marker
in the comment block. Note that this also works for the parameters of a function.

Here are some examples:
int var; /x!< Detailed description after the member x/

This block can be used to put a Qt style detailed documentation block affer a member. Other ways to do the same
are:

int var; /**< Detailed description after the member =/
or

int var; //!< Detailed description after the member
//1<

or

int var; ///< Detailed description after the member
///<

Most often one only wants to put a brief description after a member. This is done as follows:

int var; //!< Brief description after the member

Generated by Doxygen 1.8.11

20 Documenting the code

or
int var; ///< Brief description after the member

For functions one can use the @param command to document the parameters and then use [in], [out],
[in, out] to document the direction. For inline documentation this is also possible by starting with the direc-
tion attribute, e.g.

void foo(int v /*x< [in] docs for input parameter v. x/);

Note that these blocks have the same structure and meaning as the special comment blocks in the previous section
only the < indicates that the member is located in front of the block instead of after the block.

Here is an example of the use of these comment blocks:

/*! A test class x/

class Afterdoc_Test
{
public:
/%% An enum type.
+ The documentation block cannot be put after the enum!
*/
enum EnumType

{

int Evall, /*x< enum value 1 %/
int EVal2 /*x< enum value 2 =/
bi
void member () ; //!'< a member function.
protected:
int value; /+!< an integer value */

bi
See After Block example for the corresponding IATEX documentation that is generated by doxygen.

Warning

These blocks can only be used to document members and parameters. They cannot be used to document
files, classes, unions, structs, groups, namespaces and enums themselves. Furthermore, the structural com-
mands mentioned in the next section (like \class) are not allowed inside these comment blocks.

Examples

Here is an example of a documented piece of C++ code using the Qt style:

//! A test class.
/!
A more elaborate class description.

*/

class QTstyle_Test
{
public:

//! An enum.
/+! More detailed enum description. x/
enum TEnum {
TVall, /*!< Enum value TVall. x/
TVal2, /*!< Enum value TVal2. x/
TVal3 /+!< Enum value TVal3. x/
}
//! Enum pointer.
/%! Details. x/
*enumPtr,
//! Enum variable.
/x! Details. */
enumvar;

//! A constructor.
/%!
A more elaborate description of the constructor.
*/
QTstyle_Test ();

Generated by Doxygen 1.8.11

4.1 Special comment blocks 21

//! A destructor.
/x !
A more elaborate description of the destructor.
*/
~QTstyle_Test ();

//'" A normal member taking two arguments and returning an integer value.
/!
\param a an integer argument.
\param s a constant character pointer.
\return The test results
\sa QTstyle_Test (), ~QTstyle_Test (), testMeToo() and publicVar (
*/
int testMe (int a,const char =xs);

//! A pure virtual member.
/!
\sa testMe ()
\param cl the first argument.
\param c2 the second argument.
*/
virtual void testMeToo (char cl,char c2) = 0;

//! A public variable.
/%!
Details.
*/
int publicVar;

//! A function variable.
/*!
Details.
*/
int (xhandler) (int a,int b);
Vi

See QT Style example for the corresponding IATEX documentation that is generated by doxygen.

The brief descriptions are included in the member overview of a class, namespace or file and are printed using
a small italic font (this description can be hidden by setting BRIEF_MEMBER_DESC to NO in the config file). By
default the brief descriptions become the first sentence of the detailed descriptions (but this can be changed by
setting the REPEAT_BRIEF tag to NO). Both the brief and the detailed descriptions are optional for the Qt style.

By default a JavaDoc style documentation block behaves the same way as a Qt style documentation block. This is
not according the JavaDoc specification however, where the first sentence of the documentation block is automati-
cally treated as a brief description. To enable this behavior you should set JAVADOC_AUTOBRIEF to YES in the
configuration file. If you enable this option and want to put a dot in the middle of a sentence without ending it, you
should put a backslash and a space after it. Here is an example:

/** Brief description (e.g.\ using only a few words). Details follow. =/

Here is the same piece of code as shown above, this time documented using the JavaDoc style and JAVADOC_«
AUTOBRIEF set to YES:

/**
* A test class. A more elaborate class description.

*/

class Javadoc_Test
{
public:

/ *x

* An enum.

* More detailed enum description.
*/

enum TEnum {
TVall, /**< enum value TVall. x/
TVal2, /x*< enum value TVal2. x/
TVal3 /#*x< enum value TvVal3. x/
}
xenumPtr, /*%< enum pointer. Details. x/
enumVar; /*%< enum variable. Details. x/

[x %
* A constructor.
* A more elaborate description of the constructor.

Generated by Doxygen 1.8.11

22 Documenting the code

*/
Javadoc_Test () ;

/ x*
* A destructor.
* A more elaborate description of the destructor.
*/
~Javadoc_Test () ;

[x*
* a normal member taking two arguments and returning an integer value.
* @param a an integer argument.

@param s a constant character pointer.

@see Javadoc_Test ()

@see ~Javadoc_Test ()

@see testMeToo ()

* @see publicVar ()

% @return The test results

*/

int testMe (int a,const char xs);

ok %k

[x %

* A pure virtual member.

* @see testMe ()

* @param cl the first argument.

* @param c2 the second argument.

*/

virtual void testMeToo (char cl,char c2) = 0;

[x*
* a public variable.
* Details.
*/

int publicVar;

[x%

* a function variable.

* Details.

*/

int (xhandler) (int a,int b);

See Javadoc Style example for the corresponding IATEX documentation that is generated by doxygen.

Similarly, if one wishes the first sentence of a Qt style documentation block to automatically be treated as a brief
description, one may set QT_AUTOBRIEF to YES in the configuration file.

Documentation at other places

In the examples in the previous section the comment blocks were always located in front of the declaration or
definition of a file, class or namespace or in front or after one of its members. Although this is often comfortable,
there may sometimes be reasons to put the documentation somewhere else. For documenting a file this is even
required since there is no such thing as "in front of a file".

Doxygen allows you to put your documentation blocks practically anywhere (the exception is inside the body of a
function or inside a normal C style comment block).

The price you pay for not putting the documentation block directly before (or after) an item is the need to put a
structural command inside the documentation block, which leads to some duplication of information. So in practice
you should avoid the use of structural commands unless other requirements force you to do so.

Structural commands (like all other commands) start with a backslash (\), or an at-sign (@) if you prefer JavaDoc
style, followed by a command name and one or more parameters. For instance, if you want to document the class

Test in the example above, you could have also put the following documentation block somewhere in the input that
is read by doxygen:

/*! \class Test
\brief A test class.

A more detailed class description.

*/

Here the special command \class is used to indicate that the comment block contains documentation for the
class Test. Other structural commands are:

Generated by Doxygen 1.8.11

4.1 Special comment blocks

23

See section Special Commands for detailed information about these and many other commands.

\struct to document a C-struct.
\union to document a union.
\enum to document an enumeration type.

\ £n to document a function.

\var to document a variable or typedef or enum value.

\def to document a #define.

\typedef to document a type definition.

\file to document a file.

\namespace to document a namespace.
\package to document a Java package.

\interface to document an IDL interface.

To document a member of a C++ class, you must also document the class itself. The same holds for namespaces.
To document a global C function, typedef, enum or preprocessor definition you must first document the file that
contains it (usually this will be a header file, because that file contains the information that is exported to other
source files).

Attention

Here is an example of a C header named st ructcmd. h that is documented using structural commands:

Let's repeat that, because it is often overlooked: to document global objects (functions, typedefs, enum,
macros, etc), you must document the file in which they are defined. In other words, there must at least be a

/*! \file x/
ora

/*% QRfile */

line in this file.

/*! \file structcmd.h

*/

/%!

*/

/*!

*/

/%!

*/

/*!

*/

\brief A Documented file.
Details.

\def MAX(a,b)

\brief A macro that returns the maximum of \a a and \a b.
Details.

\var typedef unsigned int UINT32

\brief A type definition for a .

Details.

\var int errno

\brief Contains the last error code.
\warning Not thread safe!

\fn int open(const char spathname,int flags)
\brief Opens a file descriptor.

\param pathname The name of the descriptor.
\param flags Opening flags.

Generated by Doxygen 1.8.11

24 Documenting the code

/*! \fn int close(int fd)
\brief Closes the file descriptor \a fd.
\param fd The descriptor to close.

*/

/* ! \fn size_t write(int fd,const char xbuf, size_t count)
\brief Writes \a count bytes from \a buf to the filedescriptor \a fd.
\param fd The descriptor to write to.
\param buf The data buffer to write.
\param count The number of bytes to write.
*/

/*! \fn int read(int fd,char *buf,size_t count)
\brief Read bytes from a file descriptor.
\param fd The descriptor to read from.
\param buf The buffer to read into.

\param count The number of bytes to read.

*/

#define MAX (a,b) (((a)>(b))?(a): (b))
typedef unsigned int UINT32;

int errno;

int open(const char =*,int);

int close (int);

size_t write(int,const char %, size_t);
int read(int,char x,size_t);

See Structural Commands example for the corresponding IATEX documentation that is generated by doxygen.

Because each comment block in the example above contains a structural command, all the comment blocks could be
moved to another location or input file (the source file for instance), without affecting the generated documentation.
The disadvantage of this approach is that prototypes are duplicated, so all changes have to be made twice! Because
of this you should first consider if this is really needed, and avoid structural commands if possible. | often receive
examples that contain \fn command in comment blocks which are place in front of a function. This is clearly a case
where the \fn command is redundant and will only lead to problems.

When you place a comment block in a file with one of the following extensions . dox, . txt, or . doc then doxygen
will hide this file from the file list.

If you have a file that doxygen cannot parse but still would like to document it, you can show it as-is using \verbin-
clude, e.g.

/*! \file myscript.sh
* Look at this nice script:
* \verbinclude myscript.sh

*/

Make sure that the script is explicitly listed in the INPUT or that FILE_PATTERNS includes the . sh extention and
the the script can be found in the path set via EXAMPLE_PATH.

4.1.2 Comment blocks in Python

For Python there is a standard way of documenting the code using so called documentation strings. Such strings
are stored in doc and can be retrieved at runtime. Doxygen will extract such comments and assume they have to
be represented in a preformatted way.

1 """@package docstring

2 Documentation for this module.

3

4 More details.

5 wnn

6

7 def func():

8 """Documentation for a function.
9

10 More details.

11 mwn

12

13

14 class PyClass:

15 """Documentation for a class.
16

17 More details.

Generated by Doxygen 1.8.11

4.1 Special comment blocks 25

18 W
19

20 def __init__ (self):

21 """The constructor."""

22 self._memVar = 0;

23

24 def PyMethod (self):

25 """Documentation for a method."""
26

27

See Python Docstring example for the corresponding IATEX documentation that is generated by doxygen.
Note that in this case none of doxygen's special commands are supported.

There is also another way to document Python code using comments that start with "##". These type of comment
blocks are more in line with the way documentation blocks work for the other languages supported by doxygen and
this also allows the use of special commands.

Here is the same example again but now using doxygen style comments:
@package pyexample

Documentation for this module.

¥

More details.

Documentation for a function.

W oUW N

More details.
9 def func():
10 1

12 ## Documentation for a class.
13 #

14 # More details.

15 class PyClass:

16

17 ## The constructor.

18 def __init__ (self):

19 self._memVar = 0;

20

21 ## Documentation for a method.
22 # (@param self The object pointer.
23 def PyMethod (self):

24]

25

26 ## A class variable.

27 classVar = 0;

28

29 ## @var _memVar

30 # a member variable

See Python example for the corresponding IATEX documentation that is generated by doxygen.

Since python looks more like Java than like C or C++, you should set OPTIMIZE_OUTPUT_JAVA to YES in the
config file.

4.1.3 Comment blocks in VHDL

For VHDL a comment normally start with "--". Doxygen will extract comments starting with "--I". There are only two
types of comment blocks in VHDL; a one line "--I" comment representing a brief description, and a multi-line "--!"

comment (where the "--I" prefix is repeated for each line) representing a detailed description.

Comments are always located in front of the item that is being documented with one exception: for ports the
comment can also be after the item and is then treated as a brief description for the port.

Here is an example VHDL file with doxygen comments:

2 ——! @file

3 —-! @brief 2:1 Mux using with-select

4 ,,,
5

6 —-! Use standard library

7 library e;

Generated by Doxygen 1.8.11

Documenting the code

26

8 ——! Use logic elements

9 use ieee.std_logic_1164.al1;

10

11 --! Mux entity brief description

12

13 —-! Detailed description of this

14 —--! mux design element.

15 enti mux_using_with 1

16 oort (

17 din_0 : std_logic; --! Mux first input
18 din_1 HE std_logic; —--! Mux Second input
19 sel : in std_logic; --! Select input
20 mux_out : ¢ std_logic --! Mux output
21)i

22 end entity;

23

24 --! @brief Architecture definition of the MUX

25 --! Q@details More details about this mux element.
26 [t T behavior mux_using_with is

27 begin

28 with (sel) select

29 mux_out <= din_0 when "0’,

30 din_1 w others;

31 1 : ecture;

32

See VHDL example for the corresponding IATEX documentation that is generated by doxygen.

To get proper looking output you need to set OPTIMIZE_OUTPUT_VHDL to YES in the config file. This will also
affect a number of other settings. When they were not already set correctly doxygen will produce a warning telling

which settings where overruled.

4.1.4 Comment blocks in Fortran

When using doxygen for Fortran code you should set OPTIMIZE_FOR_FORTRAN to YES.

The parser tries to guess if the source code is fixed format Fortran or free format Fortran code. This may not always
be correct. If not one should use EXTENSION_MAPPING to correct this. By setting EXTENSION_MAPPING =
f=FortranFixed f90=FortranFree files with extension f are interpreted as fixed format Fortran code and

files with extension £90 are interpreted as free format Fortran code.

For Fortran "I>" or "I<" starts a comment and "!!" or "!>" can be used to continue an one line comment into a

multi-line comment.

Here is an example of a documented Fortran subroutine:

!> Build the restriction matrix for the aggregation

'l method.

!'l @param aggr information about the aggregates

!'l @todo Handle special case

subroutine intrestbuild(A,aggr,Restrict,A_ghost)
implicit none

Type (spmtx), intent (in) :: a !< our fine level matrix
Type (aggrs), intent (in) :: aggr

Type (spmtx), intent (out) :: restrict !< Our restriction matrix
]

end subroutine

As an alternative you can also use comments in fixed format code:

C> Function comment
C> another line of comment
function a (i)
C> input parameter
integer i
end function A

4.1.5 Comment blocks in Tcl

Doxygen documentation can be included in normal Tcl comments.

To start a new documentation block start a line with ## (two hashes). All following comment lines and continuation
lines will be added to this block. The block ends with a line not starting with a # (hash sign).

Generated by Doxygen 1.8.11

4.1 Special comment blocks 27

A brief documentation can be added with ;#< (semicolon, hash and lower then sign). The brief documentation also
ends at a line not starting with a # (hash sign).

Inside doxygen comment blocks all normal doxygen markings are supported. The only exceptions are described in
the following two paragraphs.

If a doxygen comment block ends with a line containing only #\ code or #@code all code until a line only containing
#\endcode or #@endcode is added to the generated documentation as code block.

If a doxygen comment block ends with a line containing only #\verbatimor #@verbatim all code until a line
only containing #\endverbatimor #@endverbatim is added verbatim to the generated documentation.

To detect namespaces, classes, functions and variables the following Tcl commands are recognized. Documenta-
tion blocks can be put on the lines before the command.

* namespace eval .. Namespace

* proc .. Function

* variable .. Variable

* common .. Common variable

* itcl::class .. Class

e itcl::body .. Class method body definition

e 0o::class create .. Class

* co::define .. OO Class definition

* method .. Class method definitions

* constructor .. Class constructor

* destructor .. Class destructor

* public .. Set protection level

* protected .. Set protection level

* private .. Set protection level

Following is an example using doxygen style comments:

1 ## \file tclexample.tcl

2 # File documentation.

3 #\verbatim

4

5 # Startup code:\

6 exec tclsh "$0" "s@"

7 #\endverbatim

8 ## Documented namespace \c ns .

9 # The code is inserted here:

10 #\code

11 namespace eval ns {

12 ## Documented proc \c ns_proc .

13 # param[in] arg some argument

14 proc ns_proc {arg} {}

15 ## Documented var \c ns_var

16 # Some documentation.

17 variable ns_var

18 ## Documented itcl class \c itcl_class .
19 itcl::class itcl_class {

20 ## Create object.

21 constructor {args} {eval $args}

22 ## Destroy object.

23 destructor {exit}

24 ## Documented itcl method \c itcl_method_x .
25 # param[in] arg Argument

26 private method itcl_method_x {arg}{}

27 ## Documented itcl method \c itcl_method_y .
28 # param[in] arg Argument

29 protected method itcl_method_y {arg} {}

Generated by Doxygen 1.8.11

28 Documenting the code

30 ## Documented itcl method \c itcl_method_z

31 # param[in] arg Argument

32 public method itcl_method_z {arg} {}

33 ## Documented common itcl var \c itcl_vVar .

34 common itcl_Var

35 ## \protectedsection

36

37 variable itcl_varl;#< Documented itcl var \c itcl_varl
38 variable itcl_var2}

39 ## Documented oo class \c oo_class .

40 oo::class create oo_class {

41 ## Create object.

42 # Configure with args

43 constructor {args} {eval $args}

44 ## Destroy object.

45 # Exit.

46 destructor {exit}

47 ## Documented oo var \c oo_var .

48 # Defined inside class

49 variable oo_var

50 ## \private Documented oo method \c oo_method_x .
51 # param[in] arg Argument

52 method oo_method_x {arg} {}

53 ## \protected Documented oo method \c oo_method_y .
54 # param[in] arg Argument

55 method oo_method_y {arg} {}

56 ## \public Documented oo method \c oo_method_z
57 # param[in] arg Argument

58 method oo_method_z {arg} {}

59 }

60 }

61 #\endcode

62

63 itcl::body ::ns::itcl_class::itcl_method_x {argx} {
64 puts "S$argx OK"
65 }

67 oco::define ns::o0o0_class {
68 ## \public Outside defined variable \c oo_var_out .

69 # Inside oo_class
70 variable oo_var_out
71 }

72

73 #4# Documented global proc \c glob_proc .

74 # param[in] arg Argument

75 proc glob_proc {arg} {puts $arg}

77 variable glob_var; #< Documented global var \c glob_var\
78 with newline

79 #< and continued line

81 # end of file

See TCL example for the corresponding IATEX documentation that is generated by doxygen.

4.2 Anatomy of a comment block

The previous section focused on how to make the comments in your code known to doxygen, it explained the
difference between a brief and a detailed description, and the use of structural commands.

In this section we look at the contents of the comment block itself.
Doxygen supports various styles of formatting your comments.
The simplest form is to use plain text. This will appear as-is in the output and is ideal for a short description.

For longer descriptions you often will find the need for some more structure, like a block of verbatim text, a list,
or a simple table. For this doxygen supports the Markdown syntax, including parts of the Markdown Extra
extension.

Markdown is designed to be very easy to read and write. It's formatting is inspired by plain text mail. Markdown
works great for simple, generic formatting, like an introduction page for your project. Doxygen also supports reading
of markdown files directly. For more details see chapter Markdown support.

For programming language specific formatting doxygen has two forms of additional markup on top of Markdown
formatting.

Generated by Doxygen 1.8.11

http://daringfireball.net/projects/markdown/syntax
http://michelf.com/projects/php-markdown/extra/

4.2 Anatomy of a comment block 29

1. Javadoc like markup. See Special Commands for a complete overview of all commands supported by
doxygen.

2. XML markup as specified in the C# standard. See XML Commands for the XML commands supported by
doxygen.

If this is still not enough doxygen also supports a subset of the HTML markup language.

Generated by Doxygen 1.8.11

http://en.wikipedia.org/wiki/Javadoc
http://en.wikipedia.org/wiki/C_Sharp_(programming_language)#XML_documentation_system
http://en.wikipedia.org/wiki/HTML

30

Documenting the code

Generated by Doxygen 1.8.11

Chapter 5

Markdown

Markdown support was introduced in doxygen version 1.8.0. It is a plain text formatting syntax written by John
Gruber, with the following underlying design goal:

The design goal for Markdown's formatting syntax is to make it as readable as possible. The idea is
that a Markdown-formatted document should be publishable as-is, as plain text, without looking like it's
been marked up with tags or formatting instructions. While Markdown's syntax has been influenced by
several existing text-to-HTML filters, the single biggest source of inspiration for Markdown's syntax is
the format of plain text email.

In the next section the standard Markdown features are briefly discussed. The reader is referred to the Markdown
site for more details.

Some enhancements were made, for instance PHP Markdown Extra, and GitHub flavored
Markdown. The section Markdown Extensions discusses the extensions that doxygen supports.

Finally section Doxygen specifics discusses some specifics for doxygen's implementation of the Markdown stan-
dard.

5.1 Standard Markdown

5.1.1 Paragraphs

Even before doxygen had Markdown support it supported the same way of paragraph handling as Markdown: to
make a paragraph you just separate consecutive lines of text by one or more blank lines.

An example:

Here is text for one paragraph.

We continue with more text in another paragraph.

5.1.2 Headers

Just like Markdown, doxygen supports two types of headers
Level 1 or 2 headers can be made as the follows

This is a level 1 header

This is a level 2 header

http://daringfireball.net/projects/markdown
http://daringfireball.net/projects/markdown
http://daringfireball.net/projects/markdown
http://michelf.com/projects/php-markdown/extra/
http://github.github.com/github-flavored-markdown/
http://github.github.com/github-flavored-markdown/

32 Markdown

A header is followed by a line containing only ='s or -'s. Note that the exact amount of ='s or -'s is not important as
long as there are at least two.

Alternatively, you can use #'s at the start of a line to make a header. The number of #'s at the start of the line
determines the level (up to 6 levels are supported). You can end a header by any number of #'s.

Here is an example:

This is a level 1 header

This is level 3 header

5.1.3 Block quotes
Block quotes can be created by starting each line with one or more >'s, similar to what is used in text-only emails.

> This is a block quote
> spanning multiple lines

Lists and code blocks (see below) can appear inside a quote block. Quote blocks can also be nested.
Note that doxygen requires that you put a space after the (last) > character to avoid false positives, i.e. when writing

0 if OK\n
>1 if NOK

the second line will not be seen as a block quote.

5.1.4 Lists
Simple bullet lists can be made by starting a line with -, +, or .

- Item 1

More text for this item.
- Item 2

+ nested list item.

+ another nested item.
- Item 3

List items can span multiple paragraphs (if each paragraph starts with the proper indentation) and lists can be
nested. You can also make a numbered list like so

1. First item.
2. Second item.

Make sure to also read Lists Extensions for doxygen specifics.

5.1.5 Code Blocks
Preformatted verbatim blocks can be created by indenting each line in a block of text by at least 4 extra spaces

This a normal paragraph
This is a code block
We continue with a normal paragraph again.
Doxygen will remove the mandatory indentation from the code block. Note that you cannot start a code block in the
middle of a paragraph (i.e. the line preceding the code block must be empty).

See section Code Block Indentation for more info how doxygen handles indentation as this is slightly different than
standard Markdown.

Generated by Doxygen 1.8.11

5.1 Standard Markdown 33

5.1.6 Horizontal Rulers

A horizontal ruler will be produced for lines containing at least three or more hyphens, asterisks, or underscores.
The line may also include any amount of whitespace.

Examples:

Note that using asterisks in comment blocks does not work. See Use of asterisks for details.

5.1.7 Emphasis

To emphasize a text fragment you start and end the fragment with an underscore or star. Using two stars or
underscores will produce strong emphasis.

Examples:

single asterisksx
single underscores
double asterisksxx

double underscores

See section Emphasis limits for more info how doxygen handles emphasis spans slightly different than standard
Markdown.

5.1.8 code spans

To indicate a span of code, you should wrap it in backticks (‘). Unlike code blocks, code spans appear inline in a
paragraph. An example:

Use the ‘printf()‘ function.
To show a literal backtick inside a code span use double backticks, i.e.

To assign the output of command ‘ls' to ‘var' use ‘‘var=‘ls‘‘‘.

See section Code Spans Limits for more info how doxygen handles code spans slightly different than standard
Markdown.

5.1.9 Links

Doxygen supports both styles of make links defined by Markdown: inline and reference.

For both styles the link definition starts with the link text delimited by [square brackets].

Inline Links

For an inline link the link text is followed by a URL and an optional link title which together are enclosed in a set of
regular parenthesis. The link title itself is surrounded by quotes.

Examples:

[The link text]
[The link text]
[The link text]
[The link text]

http://example.net/)

http://example.net/ "Link title")
/relative/path/to/index.html "Link title")
somefile.html)

(
(
(
(

Generated by Doxygen 1.8.11

34 Markdown

In addition doxygen provides a similar way to link a documented entity:

[The link text] (Qref MyClass)

Reference Links

Instead of putting the URL inline, you can also define the link separately and then refer to it from within the text.
The link definition looks as follows:

[link name]: http://www.example.com "Optional title"

Instead of double quotes also single quotes or parenthesis can be used for the title part.
Once defined, the link looks as follows

[link text] [link name]

If the link text and name are the same, also
[link name] []

or even

[1ink name]

can be used to refer to the link. Note that the link name matching is not case sensitive as is shown in the following
example:

I get 10 times more traffic from [Google] than from
[Yahoo] or [MSN].

[google]: http://google.com/ "Google"
[yahoo]: http://search.yahoo.com/ "Yahoo Search"
[msn]: http://search.msn.com/ "MSN Search"

Link definitions will not be visible in the output.
Like for inline links doxygen also supports @ref inside a link definition:

[myclass]: @ref MyClass "My class"

5.1.10 Images

Markdown syntax for images is similar to that for links. The only difference is an additional ! before the link text.
Examples:

! [Caption text] (/path/to/img. jpg)

! [Caption text] (/path/to/img.jpg "Image title")
! [Caption text] [img def]

!'[img def]

[img def]: /path/to/img.jpg "Optional Title"
Also here you can use @ref to link to an image:

! [Caption text] (@ref image.png)
!'[img def]

[img def]: Q@ref image.png "Caption text"

The caption text is optional.

Generated by Doxygen 1.8.11

5.2 Markdown Extensions 35

5.1.11 Automatic Linking
To create a link to an URL or e-mail address Markdown supports the following syntax:

<http://www.example.com>
<https://www.example.com>
<ftp://www.example.com>
<mailto:address@example.com>
<address@example.com>

Note that doxygen will also produce the links without the angle brackets.

5.2 Markdown Extensions

5.2.1 Table of Contents

Doxygen supports a special link marker [TOC] which can be placed in a page to produce a table of contents at the
start of the page, listing all sections.

Note that using [TOC] is the same as using a \tableofcontents command.

5.2.2 Tables

Of the features defined by "Markdown Extra" is support for simple tables:

A table consists of a header line, a separator line, and at least one row line. Table columns are separated by the
pipe (|) character.

Here is an example:

First Header | Second Header
_____________ | —————
Content Cell | Content Cell
Content Cell | Content Cell

which will produce the following table:

First Header | Second Header
Content Cell | Content Cell
Content Cell | Content Cell

Column alignment can be controlled via one or two colons at the header separator line:

| Right | Center | Left |
[———=: | === | i———=]
| 10 | 10 | 10

[1000 | 1000 | 1000 |

which will look as follows:

Right | Center | Left
10 10 10
1000 | 1000 | 1000

For more complex tables in doxygen please have a look at: Including tables

Generated by Doxygen 1.8.11

http://michelf.com/projects/php-markdown/extra/#table

36 Markdown

5.2.3 Fenced Code Blocks

Another feature defined by "Markdown Extra" is support for fenced code blocks:

A fenced code block does not require indentation, and is defined by a pair of "fence lines". Such a line consists of
3 or more tilde (~) characters on a line. The end of the block should have the same number of tildes. Here is an
example:

This is a paragraph introducing:

By default the output is the same as for a normal code block.

For languages supported by doxygen you can also make the code block appear with syntax highlighting. To do
so you need to indicate the typical file extension that corresponds to the programming language after the opening
fence. For highlighting according to the Python language for instance, you would need to write the following:

A class
class Dummy:
pass

which will produce:

1 # A class
2 class Dummy:
3

and for C you would write:

int func(int a,int b) { return ax*b; }

which will produce:
int func(int a,int b) { axb; }

The curly braces and dot are optional by the way.
Another way to denote fenced code blocks is to use 3 or more backticks (“):

AURIRY

also a fenced code block

AURYRY

5.2.4 Header Id Attributes

Standard Markdown has no support for labeling headers, which is a problem if you want to link to a section.
PHP Markdown Extra allows you to label a header by adding the following to the header

Header 1 {#labelid}

Header 2 ## {#labelid2}

To link to a section in the same comment block you can use
[Link text] (#labelid)

to link to a section in general, doxygen allows you to use @ref

[Link text] (€ref labelid)

Note this only works for the headers of level 1 to 4.

Generated by Doxygen 1.8.11

http://michelf.com/projects/php-markdown/extra/#fenced-code-blocks

5.3 Doxygen specifics 37

5.3 Doxygen specifics

Even though doxygen tries to following the Markdown standard as closely as possible, there are couple of deviation
and doxygen specifics additions.

5.3.1 Including Markdown files as pages

Doxygen can process files with Markdown formatting. For this to work the extension for such a file should be .md
or .markdown (see EXTENSION_MAPPING if your Markdown files have a different extension, and use md as the
name of the parser). Each file is converted to a page (see the page command for details).

By default the name and title of the page are derived from the file name. If the file starts with a level 1 header
however, it is used as the title of the page. If you specify a label for the header (as shown in Header Id Attributes)
doxygen will use that as the page name.

If the label is called index or mainpage doxygen will put the documentation on the front page (index.html).
Here is an example of a file README . md that will appear as the main page when processed by doxygen:

My Main Page {#mainpage}

Documentation that will appear on the main page

If a page has a label you can link to it using @ref as is shown above. To refer to a markdown page without such
label you can simple use the file name of the page, e.g.

See [the other page] (other.md) for more info.

5.3.2 Treatment of HTML blocks

Markdown is quite strict in the way it processes block-level HTML:

block-level HTML elements — e.g. <div>, <table>, <pre>, <p>, etc. — must be separated
from surrounding content by blank lines, and the start and end tags of the block should not be indented
with tabs or spaces.

Doxygen does not have this requirement, and will also process Markdown formatting inside such HTML blocks. The
only exception is <pre> blocks, which are passed untouched (handy for ASCII art).

Doxygen will not process Markdown formatting inside verbatim or code blocks, and in other sections that need to
be processed without changes (for instance formulas or inline dot graphs).

5.3.3 Code Block Indentation

Markdown allows both a single tab or 4 spaces to start a code block. Since doxygen already replaces tabs by
spaces before doing Markdown processing, the effect will only be same if TAB_SIZE in the config file has been set
to 4. When it is set to a higher value spaces will be present in the code block. A lower value will prevent a single tab
to be interpreted as the start of a code block.

With Markdown any block that is indented by 4 spaces (and 8 spaces inside lists) is treated as a code block. This
indentation amount is absolute, i.e. counting from the start of the line.

Since doxygen comments can appear at any indentation level that is required by the programming language, it uses
a relative indentation instead. The amount of indentation is counted relative to the preceding paragraph. In case
there is no preceding paragraph (i.e. you want to start with a code block), the minimal amount of indentation of the
whole comment block is used as a reference.

In most cases this difference does not result in different output. Only if you play with the indentation of paragraphs
the difference is noticeable:

Generated by Doxygen 1.8.11

38 Markdown

text
text
text

code

In this case Markdown will put the word code in a code block, whereas Doxygen will treat it as normal text, since
although the absolute indentation is 4, the indentation with respect to the previous paragraph is only 1.

Note that list markers are not counted when determining the relative indent:

1. Iteml
More text for iteml
2. Item2

Code block for item2

For Iltem1 the indentation is 4 (when treating the list marker as whitespace), so the next paragraph "More text..."
starts at the same indentation level and is therefore not seen as a code block.

5.3.4 Emphasis limits

Unlike standard Markdown, doxygen will not touch internal underscores or stars, so the following will appear as-is:
a_nice_identifier

Furthermore, a * or __ only starts an emphasis if

« it is followed by an alphanumerical character, and

* it is preceded by a space, newline, or one the following characters <{ ([, :;
An emphasis ends if

« it is not followed by an alphanumerical character, and

« it is not preceded by a space, newline, or one the following characters ({ [<=+-\@

Lastly, the span of the emphasis is limited to a single paragraph.

5.3.5 Code Spans Limits
Note that unlike standard Markdown, doxygen leaves the following untouched.

A ‘cool’ word in a ‘nice’ sentence.

In other words; a single quote cancels the special treatment of a code span wrapped in a pair of backtick characters.
This extra restriction was added for backward compatibility reasons.

5.3.6 Lists Extensions

With Markdown two lists separated by an empty line are joined together into a single list which can be rather
unexpected and many people consider it to be a bug. Doxygen, however, will make two separate lists as you would
expect.

Example:

Generated by Doxygen 1.8.11

5.3 Doxygen specifics 39

- Iteml of list 1
- Item2 of list 1

[y

. Iteml of list 2
2. Item2 of list 2

With Markdown the actual numbers you use to mark the list have no effect on the HTML output Markdown produces.
l.e. standard Markdown treats the following as one list with 3 numbered items:

1. Iteml
1. Item2
1. Item3

Doxygen however requires that the numbers used as marks are in strictly ascending order, so the above example
would produce 3 lists with one item. An item with an equal or lower number than the preceding item, will start a new
list. For example:

Iteml of list
. Item2 of list
. Iteml of list
. Item2 of list

SN W
NN P

will produce:

1. Item1 of list 1

2. ltem2 of list 1

1. ltem1 of list 2

2. ltem2 of list 2

Historically doxygen has an additional way to create numbered lists by using —# markers:

-# iteml
—# item2

5.3.7 Use of asterisks

Special care has to be taken when using *'s in a comment block to start a list or make a ruler.
Doxygen will strip off any leading x's from the comment before doing Markdown processing. So although the
following works fine

/*%x A list:
* * 1teml
* % item2
*/
When you remove the leading *'s doxygen will strip the other stars as well, making the list disappear!

Rulers created with *'s will not be visible at all. They only work in Markdown files.

5.3.8 Limits on markup scope

To avoid that a stray * or _ matches something many paragraphs later, and shows everything in between with
emphasis, doxygen limits the scope of a x and _ to a single paragraph.

For a code span, between the starting and ending backtick only two new lines are allowed.

Also for links there are limits; the link text, and link title each can contain only one new line, the URL may not contain
any newlines.

Generated by Doxygen 1.8.11

40 Markdown

5.4 Debugging of problems

When doxygen parses the source code it first extracts the comments blocks, then passes these through the Mark-
down preprocessor. The output of the Markdown preprocessing consists of text with special commands and HTML
commands. A second pass takes the output of the Markdown preprocessor and converts it into the various output
formats.

During Markdown preprocessing no errors are produced. Anything that does not fit the Markdown syntax is simply
passed on as-is. In the subsequent parsing phase this could lead to errors, which may not always be obvious as
they are based on the intermediate format.

To see the result after Markdown processing you can run doxygen with the —d Markdown option. It will then print
each comment block before and after Markdown processing.

Generated by Doxygen 1.8.11

Chapter 6

Lists

Doxygen provides a number of ways to create lists of items.
Using dashes

By putting a number of column-aligned minus (-) signs at the start of a line, a bullet list will automatically be gener-
ated. Instead of the minus sign also plus (+) or asterisk (x) can be used.

Numbered lists can also be generated by using a minus followed by a hash or by using a number followed by a dot.
Nesting of lists is allowed and is based on indentation of the items.

Here is an example:

A list of events:

— mouse events
—-# mouse move event
-# mouse click event\n

More info about the click event.

—# mouse double click event

- keyboard events
1. key down event
2. key up event

More text here.

L S T R S N

~

The result will be:

A list of events:

* mouse events

1. mouse move event

2. mouse click event
More info about the click event.

3. mouse double click event
» keyboard events
1. key down event

2. key up event

More text here.

If you use tabs for indentation within lists, please make sure that TAB_SIZE in the configuration file is set to the
correct tab size.

42 Lists

You can end a list by starting a new paragraph or by putting a dot (.) on an empty line at the same indentation level
as the list you would like to end.

Here is an example that speaks for itself:

*

Text before the list
- list item 1
- sub item 1

- sub sub item 1

- sub sub item 2

The dot above ends the sub sub item list.
More text for the first sub item
The dot above ends the first sub item.
More text for the first list item
- sub item 2
- sub item 3
- list item 2

More text in the same paragraph.

More text in a new paragraph.

L S S S S . S S T S N S ST S N T S

~

Using HTML commands

If you like you can also use HTML commands inside the documentation blocks.
Here is the above example with HTML commands:

A list of events:

 mouse events

mouse move event
mouse click event

More info about the click event.

mouse double click event

 keyboard events

key down event
key up event

More text here.

L S S T S IS N N S I o

*

*
~

Note

In this case the indentation is not important.

Using \arg or \li

For compatibility with the Qt Software's internal documentation tool gdoc and with KDoc, doxygen has two com-
mands that can be used to create simple unnested lists.

See \arg and \li for more info.

Generated by Doxygen 1.8.11

Chapter 7
Grouping

Doxygen has three mechanisms to group things together. One mechanism works at a global level, creating a new
page for each group. These groups are called 'modules' in the documentation. The second mechanism works within
a member list of some compound entity, and is referred to as a 'member groups'. For pages there is a third grouping
mechanism referred to as subpaging.

7.1 Modules

Modules are a way to group things together on a separate page. You can document a group as a whole, as well
as all individual members. Members of a group can be files, namespaces, classes, functions, variables, enums,
typedefs, and defines, but also other groups.

To define a group, you should put the \defgroup command in a special comment block. The first argument of the
command is a label that should uniquely identify the group. The second argument is the name or title of the group
as it should appear in the documentation.

You can make an entity a member of a specific group by putting a \ingroup command inside its documentation block.

To avoid putting \ingroup commands in the documentation for each member you can also group members together
by the open marker @ { before the group and the closing marker @} after the group. The markers can be put in the
documentation of the group definition or in a separate documentation block.

Groups themselves can also be nested using these grouping markers.

You will get an error message when you use the same group label more than once. If you don't want doxygen to
enforce unique labels, then you can use \addtogroup instead of \defgroup. It can be used exactly like \defgroup, but
when the group has been defined already, then it silently merges the existing documentation with the new one. The
title of the group is optional for this command, so you can use

/%% \addtogroup <label>
* @
*/

[xx Q}*/

to add additional members to a group that is defined in more detail elsewhere.

Note that compound entities (like classes, files and namespaces) can be put into multiple groups, but members (like
variable, functions, typedefs and enums) can only be a member of one group (this restriction is in place to avoid
ambiguous linking targets in case a member is not documented in the context of its class, namespace or file, but
only visible as part of a group).

Doxygen will put members into the group whose definition has the highest "priority": e.g. An explicit \ingroup
overrides an implicit grouping definition via @ { @}. Conflicting grouping definitions with the same priority trigger a
warning, unless one definition was for a member without any explicit documentation.

The following example puts VarlnA into group A and silently resolves the conflict for IntegerVariable by putting it into

44 Grouping

group IntVariables, because the second instance of IntegerVariable is undocumented:

/ * %
* \ingroup A
*/

extern int VarInA;

/ * %

+ \defgroup IntVariables Global integer variables
* @

*/

/*% an integer variable =/
extern int IntegerVariable;

/xxQ@}*/

/ *x

* \defgroup Variables Global variables
*/

/xx@{x/

/*% a variable in group A */
int VarInA;

int IntegerVariable;

/*xxQ@}*/

The \ref command can be used to refer to a group. The first argument of the \ref command should be group's label.
To use a custom link name, you can put the name of the links in double quotes after the label, as shown by the
following example

This is the \ref group_label "link" to this group.

The priorities of grouping definitions are (from highest to lowest): \ingroup, \defgroup, \addtogroup, \weakgroup.
The last command is exactly like \addtogroup with a lower priority. It was added to allow "lazy" grouping definitions:
you can use commands with a higher priority in your .h files to define the hierarchy and \weakgroup in .c files without
having to duplicate the hierarchy exactly.

Example:

/*% @defgroup groupl The First Group
«+ This is the first group

* Qf

x/

/%% @brief class Cl in group 1 =/
class Cl {};

/*% @brief class C2 in group 1 =/
class C2 {};

/++ function in group 1 =*/
void func() {}

/*x%x @} =/ // end of groupl

/x*
* (@defgroup group2 The Second Group
+* This is the second group

*/

/** @defgroup group3 The Third Group
x This is the third group
*/

/++ @defgroup group4 The Fourth Group
* @ingroup group3
* Group 4 is a subgroup of group 3

*/

/ x*

Generated by Doxygen 1.8.11

7.2 Member Groups

45

* @ingroup group2
% (@brief class C3 in group 2
x/

class C3 {};

/*% @ingroup group2
* @brief class C4 in group 2
*/

class C4 {};

/%% @ingroup group3

* @brief class C5 in @link group3 the third group@endlink.

*/
class C5 {};

/*% @ingroup groupl group2 group3 group4
* namespace N1 is in four groups
* @sa @link groupl The first group@endlink, group2,
*
* Also see @ref mypage2
x/
namespace N1 {};

/xx @file
* @ingroup group3
* @brief this file in group 3
x/

/** @defgroup group5 The Fifth Group
« This is the fifth group
* @{
x/

/** @page mypagel This is a section in group 5
* Text of the first section
x/

/** @page mypage2 This is another section in group 5
* Text of the second section
x/

/+% @} %/ // end of group5

/++ @addtogroup groupl
% More documentation for the first group.
* @{

/*% another function in group 1 =/

void func2 () {}

/+% yet another function in group 1 =/
void func3() {}

/*x%x @} =/ // end of groupl

See Modules example for the corresponding IATEX documentation that is generated by doxygen.

7.2 Member Groups

group4

If a compound (e.g. a class or file) has many members, it is often desired to group them together. Doxygen already
automatically groups things together on type and protection level, but maybe you feel that this is not enough or that
that default grouping is wrong. For instance, because you feel that members of different (syntactic) types belong to

the same (semantic) group.
A member group is defined by a

///@{
///@)
block or a
/xx@{x/

/*xxQ@}*/

Generated by Doxygen 1.8.11

46 Grouping

block if you prefer C style comments. Note that the members of the group should be physically inside the member
group's body.

Before the opening marker of a block a separate comment block may be placed. This block should contain the
@name (or \name) command and is used to specify the header of the group. Optionally, the comment block may
also contain more detailed information about the group.

Nesting of member groups is not allowed.

If all members of a member group inside a class have the same type and protection level (for instance all are static
public members), then the whole member group is displayed as a subgroup of the type/protection level group (the
group is displayed as a subsection of the "Static Public Members" section for instance). If two or more members
have different types, then the group is put at the same level as the automatically generated groups. If you want
to force all member-groups of a class to be at the top level, you should put a \nosubgrouping command inside the
documentation of the class.

Example:

/*% A class. Details =/

class Memgrp_Test

{

public:

//@{
/*% Same documentation for both members. Details =/
void funclInGroupl () ;
void func2InGroupl();
//@}

/*% Function without group. Details. x/
void ungroupedFunction () ;
void funclInGroup2();
protected:
void func2InGroup2();
bi

void Memgrp_Test::funclInGroupl () {
void Memgrp_Test::func2InGroupl () {

/** @name Group2

* Description of group 2.

x/
///@{
/*% Function 2 in group 2. Details. =/
void Memgrp_Test::func2InGroup2 () {}
/** Function 1 in group 2. Details. */
void Memgrp_Test::funclInGroup2() {}
///@}

/+1 \file
* docs for this file
*/

//'eq

//! one description for all members of this group

//! (because DISTRIBUTE_GROUP_DOC is YES in the config file)
#define A 1

#define B 2

void glob_func();

//'@}

See Member Groups example for the corresponding IATEX documentation that is generated by doxygen.

Here Group1 is displayed as a subsection of the "Public Members". And Group?2 is a separate section because it
contains members with different protection levels (i.e. public and protected).

7.3 Subpaging

Information can be grouped into pages using the \page and \mainpage commands. Normally, this results in a flat
list of pages, where the "main” page is the first in the list.

Instead of adding structure using the approach described in section modules it is often more natural and convenient
to add additional structure to the pages using the \subpage command.

Generated by Doxygen 1.8.11

7.3 Subpaging 47

For a page A the \subpage command adds a link to another page B and at the same time makes page B a subpage
of A. This has the effect of making two groups GA and GB, where GB is part of GA, page A is put in group GA, and
page B is put in group GB.

Generated by Doxygen 1.8.11

48

Grouping

Generated by Doxygen 1.8.11

Chapter 8

Including Formulas

Doxygen allows you to put IATEX formulas in the output (this works only for the HTML and IATEX output, not for the
RTF nor for the man page output). To be able to include formulas (as images) in the HTML documentation, you will
also need to have the following tools installed

* latex: the IATEX compiler, needed to parse the formulas. To test | have used the teTeX 1.0 distribution.

» dvips: atool to convert DVI files to PostScript files | have used version 5.92b from Radical Eye software
for testing.

* gs: the GhostScript interpreter for converting PostScript files to bitmaps. | have used Aladdin GhostScript
8.0 for testing.

For the HTML output there is also an alternative solution using MathJax which does not require the above tools.
If you enable USE_MATHJAX in the config then the latex formulas will be copied to the HTML "as is" and a client
side javascript will parse them and turn them into (interactive) images.

There are three ways to include formulas in the documentation.

1. Using in-text formulas that appear in the running text. These formulas should be put between a pair of \f$
commands, so

The distance between \f$(x_1,y_1)\f$ and \fS$(x_2,y_2)\f$ is
\ES\sart{ (x_2-x_1) "2+ (y_2-y_1)"2}\f$.

results in:

The distance between (x1,y1) and (x2,y2) is v/(x2 —x1) + (y2 — 1)

2. Unnumbered displayed formulas that are centered on a separate line. These formulas should be put between
\f[and \f] commands. An example:

\Nf[
[T_2|=\1left| \int_{O0}"T \psi(t)
\left\{
u(a,t)-
\int_{\gamma (t) } *a
\frac{d\theta}{k (\theta,t)}
\int_{a}*\theta c(\xi)u_t (\xi,t)\,d\xi
\right\} dt
\right|
\f]
results in:

el =| [v {utan [G [c@mEnas bar

3. Formulas or other latex elements that are not in a math environment can be specified using \f{environment},
where environment is the name of the IATEX environment, the corresponding end command is \f}. Here is
an example for an equation array

http://www.mathjax.org

50 Including Formulas

\f{egnarray=} {
g &=& \frac{Gm_2}{r"2} \\
&=& \frac{(6.673 \times 10"{-11}\, \mbox{m}"3\, \mbox{kg}"{-1}\,
\mbox{s}*{-2}) (5.9736 \times 107{24}\, \mbox{kg}) }{(6371.01\, \mbox{km})"2} \\
&=& 9.82066032\, \mbox{m/s}"2
\f}

which results in:

. Chn2
&8 =

(6.673 x 107''m3kg~!s72)(5.9736 x 10**kg)
(6371.01km)?2

= 9.82066032m/s’

For the first two commands one should make sure formulas contain valid commands in IATEX's math-mode. For the
third command the section should contain valid command for the specific environment.

Warning

Currently, doxygen is not very fault tolerant in recovering from typos in formulas. It may be necessary to remove
the file formula.repository thatis written to the html directory to get rid of an incorrect formula.

Generated by Doxygen 1.8.11

Chapter 9

Including Tables

Doxygen supports two ways to put tables in the documentation.
The easiest is to use the Markdown format as shown in Markdown Extensions section Tables.

Although this format is easy to use and read, it is also rather limited. It supports only a simple grid of cells, while
each cell is a single line of plain text.

For more complex tables the HTML syntax can be used. Doxygen will process such tables and translate them to
the various output formats (at least for the formats that do support tables such as HTML and IATEX).

Here is an example of a complex table:

<table>
<caption id="multi_row">Complex table</caption>
<tr><th>Column 1 <th>Column 2 <th>Column 3
<tr><td rowspan="2">cell row=1+2,col=1<td>cell row=1l,col=2<td>cell row=1l,col=3
<tr><td rowspan="2">cell row=2+3,col=2 <td>cell row=2,col=3
<tr><td>cell row=3,col=1 <td rowspan="2">cell row=3+4,col=3
<tr><td colspan="2">cell row=4,col=1+2
<tr><td>cell row=5,col=1 <td colspan="2">cell row=5,col=2+3
<tr><td colspan="2" rowspan="2">cell row=6+7,col=1+2 <td>cell row=6,col=3
<tr> <td>cell row=7,col=3
<tr><td>cell row=8,col=1 <td>cell row=8,col=2\n

<table>

<tr><td>Inner cell row=1l,col=1<td>Inner cell row=1l,col=2
<tr><td>Inner cell row=2,col=1<td>Inner cell row=2,col=2
</table>
<td>cell row=8,col=3

Ttem 1
TItem 2

</table>

It has a caption, table heading, various row and column spans, a nested table as one of the cells, and a item list in
another cell.

Note that the end tags (like </td>) are left out in the example above. This is allowed, and in the HTML output
doxygen will add the end tags again.

The output will look as follows:

Table 9.1: Complex table

Column 1 Column 2 Column 3
cell row=1,col=2 cell row=1,col=3
cell row=2,col=3

cell row=1+2,col=1

cell row=2+3,col=2

cell row=3,col=1
cell row=4,col=1+2

cell row=3+4,col=3

52 Including Tables

Column 1 Column 2 Column 3
cell row=5,col=1 cell row=5,col=2+3

cell row=6,col=3
cell row=7,col=3

cell row=6+7,col=1+2

cell row=8,col=1 cell row=8,col=2 cell row=8,col=3
Inner cell Inner cell
row=1,col=1 row=1,col=2 * ltem 1
Inner cell Inner cell
row=2,col=1 row=2,col=2 * ltem 2

One can refer to the caption of the table using \ref using the caption's id as the label.

Generated by Doxygen 1.8.11

Chapter 10

Graphs and diagrams

Doxygen has built-in support to generate inheritance diagrams for C++ classes.

Doxygen can use the "dot" tool from graphviz to generate more advanced diagrams and graphs. Graphviz is an
open-source, cross-platform graph drawing toolkit and can be found at http://www.graphviz.org/

If you have the "dot" tool in the path, you can set HAVE_DOT to YES in the configuration file to let doxygen use it.

Doxygen uses the "dot" tool to generate the following graphs:

» A graphical representation of the class hierarchy will be drawn, along with the textual one. Currently this
feature is supported for HTML only.
Warning: When you have a very large class hierarchy where many classes derive from a common base
class, the resulting image may become too big to handle for some browsers.

« An inheritance graph will be generated for each documented class showing the direct and indirect inheritance
relations. This disables the generation of the built-in class inheritance diagrams.

» Aninclude dependency graph is generated for each documented file that includes at least one other file. This
feature is currently supported for HTML and RTF only.

» An inverse include dependency graph is also generated showing for a (header) file, which other files include
it.

» A graph is drawn for each documented class and struct that shows:

— the inheritance relations with base classes.
— the usage relations with other structs and classes (e.g. class A has a member variable m__a of type
class B, then A has an arrow to B with m__a as label).

« if CALL_GRAPH is set to YES, a graphical call graph is drawn for each function showing the functions that
the function directly or indirectly calls (see also section \callgraph and section \hidecallgraph).

« if CALLER_GRAPH is set to YES, a graphical caller graph is drawn for each function showing the functions
that the function is directly or indirectly called by (see also section \callergraph and section \hidecallergraph).

Using a layout file you can determine which of the graphs are actually shown.

The options DOT_GRAPH_MAX_NODES and MAX_DOT_GRAPH_DEPTH can be used to limit the size of the
various graphs.

The elements in the class diagrams in HTML and RTF have the following meaning:

» A yellow box indicates a class. A box can have a little marker in the lower right corner to indicate that the
class contains base classes that are hidden. For the class diagrams the maximum tree width is currently 8
elements. If a tree is wider some nodes will be hidden. If the box is filled with a dashed pattern the inheritance
relation is virtual.

http://www.graphviz.org/

54

Graphs and diagrams

The el

The el

A white box indicates that the documentation of the class is currently shown.
A gray box indicates an undocumented class.

A solid dark blue arrow indicates public inheritance.

A dashed dark green arrow indicates protected inheritance.

A dotted dark green arrow indicates private inheritance.
ements in the class diagram in IATEX have the following meaning:

A white box indicates a class. A marker in the lower right corner of the box indicates that the class has base
classes that are hidden. If the box has a dashed border this indicates virtual inheritance.

A solid arrow indicates public inheritance.
A dashed arrow indicates protected inheritance.

A dotted arrow indicates private inheritance.
ements in the graphs generated by the dot tool have the following meaning:

A white box indicates a class or struct or file.

A box with a red border indicates a node that has more arrows than are shown! In other words: the graph
is truncated with respect to this node. The reason why a graph is sometimes truncated is to prevent images
from becoming too large. For the graphs generated with dot doxygen tries to limit the width of the resulting
image to 1024 pixels.

A black box indicates that the class' documentation is currently shown.

A dark blue arrow indicates an include relation (for the include dependency graph) or public inheritance (for
the other graphs).

A dark green arrow indicates protected inheritance.
A dark red arrow indicates private inheritance.

A purple dashed arrow indicated a "usage" relation, the edge of the arrow is labeled with the variable(s)
responsible for the relation. Class A uses class B, if class A has a member variable m of type C, where B is a
subtype of C (e.g. C could be B, Bx, Tx).

Here are a couple of header files that together show the various diagrams that doxygen can generate:

diagrams_a.h

#ifnde
#defin
class

#endif

f _DIAGRAMS_A_H
e _DIAGRAMS_A_H
A { public: A *m_self; };

diagrams_Db.h

#ifnde
#defin
class
class
#endif

diag

#ifnde
#defin
#inclu
class
class
#endif

£]
e _|
A;

B { public: A xm_a; };

rams_c.h

f _DIAGRAMS_C_!
e _
de "dia
D;

C : public A { public: D *m_d; };

Generated by Doxygen 1.8.11

55

diagrams_d.h

#ifndef _DIAGRAM_D_H

#define _DIAGRAM_D_H

#include "diagrams_a.h"

#include "diagrams_b.h"

class C;

class D : virtual protected A, private B { public: C m_c;
#endif

diagrams_e.h

#ifndef _DIAGRAM_E_H
#define _DIAGRAM_E_H
#include "diagrams_d.h"
class E : public D {};
#endif

See Diagrams example for the corresponding IATEX documentation that is generated by doxygen.

}i

Generated by Doxygen 1.8.11

56

Graphs and diagrams

Generated by Doxygen 1.8.11

Chapter 11

Preprocessing

Source files that are used as input to doxygen can be parsed by doxygen's built-in C-preprocessor.

By default doxygen does only partial preprocessing. That is, it evaluates conditional compilation statements (like
#1f) and evaluates macro definitions, but it does not perform macro expansion.

So if you have the following code fragment

#define VERSION 200
#define CONST_STRING const char x

#1if VERSION >= 200

static CONST_STRING version = "2.xx";
#else

static CONST_STRING version = "1.xx";
#endif

Then by default doxygen will feed the following to its parser:

#define VERSION
#define CONST_STRING

static CONST_STRING version = "2.xx";

You can disable all preprocessing by setting ENABLE_PREPROCESSING to NO in the configuration file. In the
case above doxygen will then read both statements, i.e.:

static CONST_STRING version = "2.xx";
static CONST_STRING version = "1.xx";

In case you want to expand the CONST_STRING macro, you should set the MACRO_EXPANSION tag in the
config file to YES. Then the result after preprocessing becomes:

#define VERSION
#define CONST_STRING

static const char * version = "1.xx";

Note that doxygen will now expand all macro definitions (recursively if needed). This is often too much. Therefore,
doxygen also allows you to expand only those defines that you explicitly specify. For this you have to set the
EXPAND_ONLY_PREDEEF tag to YES and specify the macro definitions after the PREDEFINED or EXPAND_A«-
S_DEFINED tag.

A typically example where some help from the preprocessor is needed is when dealing with the language extension
from Microsoft: ___declspec. The same goes for GNU's __attribute__ extension. Here is an example
function.

extern "C" void __declspec(dllexport) ErrorMsg(String aMessage,...);

58 Preprocessing

When nothing is done, doxygen will be confused and see ___dec1spec as some sort of function. To help doxygen
one typically uses the following preprocessor settings:

ENABLE_PREPROCESSING = YES
MACRO_EXPANSION = YES
EXPAND_ONLY_PREDEF = YES
PREDEFINED = __declspec (x)=

This will make sure the __declspec (dllexport) is removed before doxygen parses the source code.

Similar settings can be used for removing __attribute__ expressions from the input:

ENABLE_PREPROCESSING = YES
MACRO_EXPANSION = YES
EXPAND_ONLY_PREDEF = YES
PREDEFINED = __attribute_ (x)=

For a more complex example, suppose you have the following obfuscated code fragment of an abstract base class
called ITUnknown:

/+x! A reference to an IID x/
#ifdef _ cplusplus

#define REFIID const IID &
#else

#define REFIID const IID =«
#endif

/*! The IUnknown interface x/

DECLARE_INTERFACE (IUnknown)

{
STDMETHOD (HRESULT, QueryInterface) (THIS_ REFIID iid, void xxppv) PURE;
STDMETHOD (ULONG, AddRef) (THIS) PURE;
STDMETHOD (ULONG, Release) (THIS) PURE;

Vi

without macro expansion doxygen will get confused, but we may not want to expand the REFIID macro, because
it is documented and the user that reads the documentation should use it when implementing the interface.

By setting the following in the config file:

ENABLE_PREPROCESSING = YES
MACRO_EXPANSION = YES
EXPAND_ONLY_PREDEF = YES
PREDEFINED = "DECLARE_INTERFACE (name)=class name" \
"STDMETHOD (result, name)=virtual result name" \
"PURE= = 0" \
THIS_= \
THIS= \
__cplusplus

we can make sure that the proper result is fed to doxygen's parser:

/x! A reference to an IID x/
#define REFIID

/*! The IUnknown interface x/
class IUnknown

{

virtual HRESULT QueryInterface (REFIID iid, void *x*ppv) = 0;
virtual ULONG AddRef () = 0;
virtual ULONG Release () = 0;

bi

Note that the PREDEFINED tag accepts function like macro definitions (like DECLARE_INTERFACE), normal
macro substitutions (like PURE and THIS) and plain defines (like __cplusplus).

Generated by Doxygen 1.8.11

59

Note also that preprocessor definitions that are normally defined automatically by the preprocessor (like __ «
cplusplus), have to be defined by hand with doxygen's parser (this is done because these defines are often
platform/compiler specific).

In some cases you may want to substitute a macro name or function by something else without exposing the result
to further macro substitution. You can do this but using the : = operator instead of =

As an example suppose we have the following piece of code:

#define QList QListT

class QListT

{
bi

Then the only way to get doxygen interpret this as a class definition for class QL1 st is to define:

PREDEFINED = QListT:=QList

Here is an example provided by Valter Minute and Reyes Ponce that helps doxygen to wade through the boilerplate
code in Microsoft's ATL & MFC libraries:

PREDEFINED = "DECLARE_INTERFACE (name)=class name" \
"STDMETHOD (result, name)=virtual result name" \
"PURE= = 0" \
THIS_= \
THIS= \

DECLARE_REGISTRY_RESOURCEID=// \
DECLARE_PROTECT_FINAL_CONSTRUCT=// \
"DECLARE_AGGREGATABLE (Class)= " \
"DECLARE_REGISTRY_RESOURCEID (Id)= " \
DECLARE_MESSAGE_MAP= \
BEGIN_MESSAGE_MAP=/+ \
END_MESSAGE_MAP=x/// \
BEGIN_COM_MAP=/* \
END_COM_MAP=x/// \
BEGIN_PROP_MAP=/x \
END_PROP_MAP=%/// \
BEGIN_MSG_MAP=/* \
END_MSG_MAP=x*/// \
BEGIN_PROPERTY_MAP=/% \
END_PROPERTY_MAP=x/// \
BEGIN_OBJECT_MAP=/x \
END_OBJECT_MAP ()=x/// \
DECLARE_VIEW_STATUS=// \
"STDMETHOD (a) =HRESULT a" \
"ATL_NO_VTABLE= " \
"__declspec(a)= " \
BEGIN_CONNECTION_POINT_MAP=/% \
END_CONNECTION_POINT_MAP=x*/// \

"DECLARE_DYNAMIC (class)= " \
"IMPLEMENT_DYNAMIC (classl, class2)= " \
"DECLARE_DYNCREATE (class)= " \
"IMPLEMENT_DYNCREATE (classl, class2)= " \
"IMPLEMENT_SERIAL (classl, class2, class3)= " \
"DECLARE_MESSAGE_MAP ()= " \

TRY=try \

"CATCH_ALL(e)= catch(...)" \

END_CATCH_ALL= \

"THROW_LAST () = throw"\

"RUNTIME_CLASS (class)=class" \
"MAKEINTRESOURCE (nId)=nId" \
"IMPLEMENT_REGISTER (v, w, x, y, z)= "\
"ASSERT (x)=assert (x)" \

"ASSERT_VALID (x)=assert (x)" \

"TRACEOQ (x)=printf (x)" \

"OS_ERR(A,B)={ #A, B }" \

__cplusplus \

"DECLARE_OLECREATE (class)= " \
"BEGIN_DISPATCH_MAP (classl, class2)= " \
"BEGIN_INTERFACE_MAP (classl, class2)= " \
"INTERFACE_PART (class, id, name)= " \

Generated by Doxygen 1.8.11

60 Preprocessing

"END_INTERFACE_MAP ()=" \
"DISP_FUNCTION (class, name, function, result, id)=" \
"END_DISPATCH_MAP ()=" \

"IMPLEMENT_OLECREATE2 (class, name, idl, id2, id3, id4,\
id5, idé, id7, id8, id9, idl0, idll)="

As you can see doxygen's preprocessor is quite powerful, but if you want even more flexibility you can always write
an input filter and specify it after the INPUT_FILTER tag.

If you are unsure what the effect of doxygen's preprocessing will be you can run doxygen as follows:

doxygen -d Preprocessor

This will instruct doxygen to dump the input sources to standard output after preprocessing has been done (Hint:
set QUIET = YES and WARNINGS = NO in the configuration file to disable any other output).

Generated by Doxygen 1.8.11

Chapter 12

Automatic link generation

Most documentation systems have special ‘see also' sections where links to other pieces of documentation can be
inserted. Although doxygen also has a command to start such a section (See section \sa), it does allow you to
put these kind of links anywhere in the documentation. For IATEX documentation a reference to the page number
is written instead of a link. Furthermore, the index at the end of the document can be used to quickly find the
documentation of a member, class, namespace or file. For man pages no reference information is generated.

The next sections show how to generate links to the various documented entities in a source file.

12.1 Links to web pages and mail addresses

Doxygen will automatically replace any URLs and mail addresses found in the documentation by links (in HTML).
To manually specify link text, use the HTML 'a' tag:

1link text

which will be automatically translated to other output formats by Doxygen.

12.2 Links to classes

All words in the documentation that correspond to a documented class and contain at least one non-lower case
character will automatically be replaced by a link to the page containing the documentation of the class. If you want
to prevent that a word that corresponds to a documented class is replaced by a link you should put a % in front of
the word. To link to an all lower case symbol, use \ref.

12.3 Links to files

All words that contain a dot (.) that is not the last character in the word are considered to be file names. If the word
is indeed the name of a documented input file, a link will automatically be created to the documentation of that file.

12.4 Links to functions

Links to functions are created if one of the following patterns is encountered:

1. <functionName>" ("<argument-list>")"

2. <functionName>" ()"

62 Automatic link generation

3. "::"<functionName>
4. (<className>"::")"<functionName>" ("<argument—-list>")"
5. (<className>"::")"<functionName>" ("<argument-1list>")"<modifiers>
6. (<className>"::")"<functionName>" ()"
7. (<className>"::")"<functionName>
where n>0.
Note 1:
Function arguments should be specified with correct types, i.e. 'fun(const std::string&,bool)' or '()' to match any
prototype.
Note 2:

Member function modifiers (like 'const' and 'volatile') are required to identify the target, i.e. 'func(int) const' and
'func(int)' target different member functions.

Note 3:

For JavaDoc compatibility a # may be used instead of a :: in the patterns above.

Note 4:

In the documentation of a class containing a member foo, a reference to a global variable is made using "::foo",
whereas #foo will link to the member.

For non overloaded members the argument list may be omitted.

If a function is overloaded and no matching argument list is specified (i.e. pattern 2 or 6 is used), a link will be
created to the documentation of one of the overloaded members.

For member functions the class scope (as used in patterns 4 to 7) may be omitted, if:

1. The pattern points to a documented member that belongs to the same class as the documentation block that
contains the pattern.

2. The class that corresponds to the documentation blocks that contains the pattern has a base class that
contains a documented member that matches the pattern.

12.5 Links to other members

All of these entities can be linked to in the same way as described in the previous section. For sake of clarity it is
advised to only use patterns 3 and 7 in this case.

Example:

/*! \file autolink.cpp
Testing automatic link generation.

A link to a member of the Autolink_Test class: Autolink_Test::member,

More specific links to the each of the overloaded members:
Autolink_Test::member (int) and Autolink_Test#member (int, int)

A link to a protected member variable of Autolink_Test: Autolink_Test#var,
A link to the global enumeration type #GlobEnum.
A link to the define #ABS (x).

A link to the destructor of the Autolink_Test class: Autolink_Test::~Autolink_Test,

Generated by Doxygen 1.8.11

12.5 Links to other members

63

A link to the typedef ::B.
A link to the enumeration type Autolink_Test::EType

A link to some enumeration values Autolink_Test::Vall and ::GVal2
*/

/!
Since this documentation block belongs to the class Autolink_Test no link to
Autolink_Test is generated.
Two ways to link to a constructor are: #Autolink_Test and Autolink_Test ().
Links to the destructor are: #~Autolink_Test and ~Autolink_Test ().

A link to a member in this class: member ().

More specific links to the each of the overloaded members:
member (int) and member (int, int) .

A link to the variable #var.

A link to the global typedef ::B.

A link to the global enumeration type #GlobEnum.

A link to the define ABS (x).

A link to a variable \link #var using another text\endlink as a link.

A link to the enumeration type #EType.

A link to some enumeration values: \link Autolink_Test::Vall Vall \endlink and ::GVall.

And last but not least a link to a file: autolink.cpp.

\sa Inside a see also section any word is checked, so EType,
Vall, GvVall, ~Autolink_Test and member will be replaced by links in HTML.
*/

class Autolink_Test

{

public:
Autolink_Test (); //!< constructor
~Autolink_Test (); //!< destructor
void member (int); /*+*< A member function. Details. x/

void member (int,int); /**< An overloaded member function. Details =x/

/*x An enum type. More details x/
enum EType {

vall, /**< enum value 1 x/
val2 /*x< enum value 2 */
}i
protected:
int var; /+*< A member variable */

i

/%! details. =/
Autolink_Test::Autolink_Test () { }

/x! details. */
Autolink_Test::~Autolink_Test () { }

/*! A global variable. x/
int globVar;

/*! A global enum. */
enum GlobEnum {

Gvall, /*!< global enum value 1 */
GVal2 /%!< global enum value 2 x/
i
/x!
* A macro definition.
*/
#define ABS (x) (((x)>0)7?(x):-(x)

typedef Autolink_Test B;

/*! \fn typedef Autolink_Test B
* A type definition.
*/

See Autolink example for the corresponding IATEX documentation that is generated by doxygen.

Generated by Doxygen 1.8.11

64 Automatic link generation

12.6 typedefs

Typedefs that involve classes, structs and unions, like

typedef struct StructName TypeName

create an alias for StructName, so links will be generated to StructName, when either StructName itself or Type«
Name is encountered.

Example:

/*! \file restypedef.cpp
* An example of resolving typedefs.
x/

/x! \struct CoordStruct

* A coordinate pair.

*/
struct CoordStruct

{

/*! The x coordinate */
float x;

/+! The y coordinate */
float y;
bi

/*! Creates a type name for CoordStruct =/
typedef CoordStruct Coord;

/!
x This function returns the addition of \a cl and \a c2, i.e:
* (cl.x+c2.x,cl.ytc2.y)
*/

Coord add(Coord cl,Coord c2)

{

}

See Typedef example for the corresponding IATEX documentation that is generated by doxygen.

Generated by Doxygen 1.8.11

Chapter 13

Output Formats

The following output formats are directly supported by doxygen:

HTML Generated if GENERATE_HTML is set to YES in the configuration file.
IATEX Generated if GENERATE_LATEX is set to YES in the configuration file.
Man pages Generated if GENERATE_MAN is set to YES in the configuration file.

RTF Generated if GENERATE_RTF is set to YES in the configuration file.

Note that the RTF output probably only looks nice with Microsoft's Word. If you have success with other
programs, please let me know.

XML Generated if GENERATE_XML is set to YES in the configuration file.

Docbook Generated if GENERATE_DOCBOOOK is set to YES in the configuration file.

The following output formats are indirectly supported by doxygen:

Compiled HTML Help (a.k.a. Windows 98 help) Generated by Microsoft's HTML Help workshop from the HTML
output if GENERATE_HTMLHELP is set to YES.

Qt Compressed Help (.qch) Generated by Qt's ghelpgenerator tool from the HTML output if GENERATE_QHP
is setto YES.

Eclipse Help Generated from HTML with a special index file that is generated when GENERATE_ECLIPSEHELP
is setto YES.

XCode DocSets Compiled from HTML with a special index file that is generated when GENERATE_DOCSET is
setto YES.

PostScript Generated from the IATEX output by running make ps in the output directory. For the best results
PDF_HYPERLINKS should be set to NO.

PDF Generated from the IATEX output by running make pdf in the output directory. To improve the PDF out-
put, you typically would want to enable the use of pdflatex by setting USE_PDFLATEX to YES in the
configuration file. In order to get hyperlinks in the PDF file you also need to enable PDF_HYPERLINKS.

66

Output Formats

Generated by Doxygen 1.8.11

Chapter 14

Searching

Doxygen indexes your source code in various ways to make it easier to navigate and find what you are looking for.
There are also situations however where you want to search for something by keyword rather than browse for it.

HTML browsers by default have no search capabilities that work across multiple pages, so either doxygen or external
tools need to help to facilitate this feature.

Doxygen has 7 different ways to add searching to the HTML output, each of which has its own advantages and
disadvantages:

1. Client side searching

The easiest way to enable searching is to enable the built-in client side search engine. This engine is implemented
using Javascript and DHTML only and runs entirely on the clients browser. So no additional tooling is required to
make it work.

To enable it set SEARCHENGINE to YES in the config file and make sure SERVER_BASED_SEARCH is set to NO.

An additional advantage of this method is that it provides live searching, i.e. the search results are presented and
adapted as you type.

This method also has its drawbacks: it is limited to searching for symbols only. It does not provide full text search
capabilities, and it does not scale well to very large projects (then searching becomes very slow).

2. Server side searching

If you plan to put the HTML documentation on a web server, and that web server has the capability to process PHP
code, then you can also use doxygen's built-in server side search engine.

To enable this set both SEARCHENGINE and SERVER_BASED_SEARCH to YES in the config file and set EXT«
ERNAL_SEARCH to NO.

Advantages over the client side search engine are that it provides full text search and it scales well to medium side
projects.

Disadvantages are that it does not work locally (i.e. using a "file:/" URL) and that it does not provide live search
capabilities.

68 Searching

Note

In the future this option will probably be replaced by the next search option.

3. Server side searching with external indexing

With release 1.8.3 of doxygen, another server based search option has been added. With this option doxygen
generates the raw data that can be searched and leaves it up to external tools to do the indexing and searching,
meaning that you could use your own indexer and search engine of choice. To make life easier doxygen ships with
an example indexer (doxyindexer) and search engine (doxysearch.cgi) based on the Xapian open source search
engine library.

To enable this search method set SEARCHENGINE, SERVER_BASED_SEARCH and EXTERNAL_SEARCH all to
YES.

See External Indexing and Searching for configuration details.

Advantages over option 2 are that this method (potentially) scales to very large projects. It is also possible to
combine multiple doxygen projects and external data into one search index. The way the interaction with the search
engine is done, makes it possible to search from local HTML pages. Also the search results have better ranking
and show context information (if available).

Disadvantages are that is requires a web server that can execute a CGl binary, and an additional indexing step after
running doxygen.

4. Windows Compiled HTML Help

If you are running doxygen on Windows, then you can make a compiled HTML Help file (.chm) out of the HTML files
produced by doxygen. This is a single file containing all HTML files and it also includes a search index. There are
viewers for this format on many platforms, and Windows even supports it natively.

To enable this set GENERATE_HTMLHELP to YES in the config file. To let doxygen compile the HTML Help file
for you, you also need to specify the path to the HTML compiler (hhc.exe) using the HHC_LOCATION config option
and the name of the resulting CHM file using CHM_FILE.

An advantage of this method is that the result is a single file that can easily be distributed. It also provides full text
search.

Disadvantages are that compiling the CHM file only works on Windows and requires Microsoft's HTML compiler,
which is not very actively supported by Microsoft. Although the tool works fine for most people, it can sometimes
crash for no apparent reason (how typical).

5. Mac OS X Doc Sets

If you are running doxygen on Mac OS X 10.5 or higher, then you can make a "doc set" out of the HTML files pro-
duced by doxygen. A doc set consists of a single directory with a special structure containing the HTML files along
with a precompiled search index. A doc set can be embedded in Xcode (the integrated development environment
provided by Apple).

To enable the creation of doc sets set GENERATE_DOCSET to YES in the config file. There are a couple of other
doc set related options you may want to set. After doxygen has finished you will find a Makefile in the HTML output
directory. Running "make install" on this Makefile will compile and install the doc set. See this article for
more info.

Advantage of this method is that it nicely integrates with the Xcode development environment, allowing for instance
to click on an identifier in the editor and jump to the corresponding section in the doxygen documentation.

Disadvantage is that it only works in combination with Xcode on MacOSX.

Generated by Doxygen 1.8.11

http://xapian.org/
https://developer.apple.com/library/mac/#featuredarticles/DoxygenXcode/_index.html

14.1 External Indexing and Searching 69

6. Qt Compressed Help

If you develop for or want to install the Qt application framework, you will get an application called Ot assistant.
This is a help viewer for Qt Compressed Help files (. gch).

To enable this feature set GENERATE_QHP to YES. You also need to fill in the other Qt help related options, such
as QHP_NAMESPACE, QHG_LOCATION, QHP_VIRTUAL _FOLDER. See this article for more info.

Feature wise the Qt compressed help featu