FflasFfpack
Namespaces | Macros | Functions
fflas_level2.inl File Reference
#include "givaro/zring.h"

Namespaces

namespace  FFLAS
 

Macros

#define __FFLASFFPACK_fflas_fflas_level2_INL
 

Functions

template<class Field >
void fassign (const Field &F, const size_t m, const size_t n, typename Field::ConstElement_ptr B, const size_t ldb, typename Field::Element_ptr A, const size_t lda)
 fassign : $A \gets B $.
 
template<class Field >
void fzero (const Field &F, const size_t m, const size_t n, typename Field::Element_ptr A, const size_t lda)
 fzero : $A \gets 0 $.
 
template<class Field >
void fzero (const Field &F, const FFLAS_UPLO shape, const FFLAS_DIAG diag, const size_t n, typename Field::Element_ptr A, const size_t lda)
 fzero : $A \gets 0 $ for a triangular matrix.
 
template<class Field , class RandIter >
void frand (const Field &F, RandIter &G, const size_t m, const size_t n, typename Field::Element_ptr A, const size_t lda)
 frand : $A \gets random $.
 
template<class Field >
bool fequal (const Field &F, const size_t m, const size_t n, typename Field::ConstElement_ptr A, const size_t lda, typename Field::ConstElement_ptr B, const size_t ldb)
 fequal : test $A = B $.
 
template<class Field >
bool fiszero (const Field &F, const size_t m, const size_t n, typename Field::ConstElement_ptr A, const size_t lda)
 fiszero : test $A = 0 $.
 
template<class Field >
void fidentity (const Field &F, const size_t m, const size_t n, typename Field::Element_ptr A, const size_t lda, const typename Field::Element &d)
 creates a diagonal matrix
 
template<class Field >
void fidentity (const Field &F, const size_t m, const size_t n, typename Field::Element_ptr A, const size_t lda)
 creates a diagonal matrix
 
template<class Field >
void freduce (const Field &F, const size_t m, const size_t n, typename Field::Element_ptr A, const size_t lda)
 freduce $A \gets  A mod F$.
 
template<class Field >
void freduce (const Field &F, const FFLAS_UPLO uplo, const size_t N, typename Field::Element_ptr A, const size_t lda)
 freduce for square symmetric matrices
 
template<class Field >
void freduce (const Field &F, const size_t m, const size_t n, typename Field::ConstElement_ptr B, const size_t ldb, typename Field::Element_ptr A, const size_t lda)
 freduce $A \gets  B mod F$.
 
template<class Field , class OtherElement_ptr >
void finit (const Field &F, const size_t m, const size_t n, const OtherElement_ptr B, const size_t ldb, typename Field::Element_ptr A, const size_t lda)
 finit $A \gets  B mod F$.
 
template<class Field , class OtherElement_ptr >
void finit (const Field &F, const size_t m, const size_t n, typename Field::Element_ptr A, const size_t lda)
 finit Initializes A in F$.
 
template<class Field , class OtherElement_ptr >
void fconvert (const Field &F, const size_t m, const size_t n, OtherElement_ptr A, const size_t lda, typename Field::ConstElement_ptr B, const size_t ldb)
 fconvert $A \gets  B mod F$.
 
template<class Field >
void fnegin (const Field &F, const size_t m, const size_t n, typename Field::Element_ptr A, const size_t lda)
 fnegin $A \gets - A$.
 
template<class Field >
void fneg (const Field &F, const size_t m, const size_t n, typename Field::ConstElement_ptr B, const size_t ldb, typename Field::Element_ptr A, const size_t lda)
 fneg $A \gets  - B$.
 
template<class Field >
void fscalin (const Field &F, const size_t m, const size_t n, const typename Field::Element alpha, typename Field::Element_ptr A, const size_t lda)
 fscalin $A \gets a \cdot A$.
 
template<class Field >
void fscal (const Field &F, const size_t m, const size_t n, const typename Field::Element alpha, typename Field::ConstElement_ptr A, const size_t lda, typename Field::Element_ptr B, const size_t ldb)
 fscal $B \gets a \cdot A$.
 
template<class Field >
void faxpy (const Field &F, const size_t m, const size_t n, const typename Field::Element alpha, typename Field::ConstElement_ptr X, const size_t ldx, typename Field::Element_ptr Y, const size_t ldy)
 faxpy : $y \gets \alpha \cdot x + y$.
 
template<class Field >
void faxpby (const Field &F, const size_t m, const size_t n, const typename Field::Element alpha, typename Field::ConstElement_ptr X, const size_t ldx, const typename Field::Element beta, typename Field::Element_ptr Y, const size_t ldy)
 faxpby : $y \gets \alpha \cdot x + \beta \cdot y$.
 
template<class Field >
void fmove (const Field &F, const size_t m, const size_t n, typename Field::Element_ptr A, const size_t lda, typename Field::Element_ptr B, const size_t ldb)
 fmove : $A \gets B $ and $ B \gets 0$.
 
template<class Field >
void fadd (const Field &F, const size_t M, const size_t N, typename Field::ConstElement_ptr A, const size_t lda, typename Field::ConstElement_ptr B, const size_t ldb, typename Field::Element_ptr C, const size_t ldc)
 fadd : matrix addition.
 
template<class Field >
void fsub (const Field &F, const size_t M, const size_t N, typename Field::ConstElement_ptr A, const size_t lda, typename Field::ConstElement_ptr B, const size_t ldb, typename Field::Element_ptr C, const size_t ldc)
 fsub : matrix subtraction.
 
template<class Field >
void fsubin (const Field &F, const size_t M, const size_t N, typename Field::ConstElement_ptr B, const size_t ldb, typename Field::Element_ptr C, const size_t ldc)
 fsubin C = C - B
 
template<class Field >
void fadd (const Field &F, const size_t M, const size_t N, typename Field::ConstElement_ptr A, const size_t lda, const typename Field::Element alpha, typename Field::ConstElement_ptr B, const size_t ldb, typename Field::Element_ptr C, const size_t ldc)
 fadd : matrix addition with scaling.
 
template<class Field >
void faddin (const Field &F, const size_t M, const size_t N, typename Field::ConstElement_ptr B, const size_t ldb, typename Field::Element_ptr C, const size_t ldc)
 faddin
 
template<class Field >
void faddin (const Field &F, const FFLAS_UPLO uplo, const size_t N, typename Field::ConstElement_ptr B, const size_t ldb, typename Field::Element_ptr C, const size_t ldc)
 fadding for symmetric matrices
 
template<class Field >
Field::Element_ptr fgemv (const Field &F, const FFLAS_TRANSPOSE TransA, const size_t M, const size_t N, const typename Field::Element alpha, typename Field::ConstElement_ptr A, const size_t lda, typename Field::ConstElement_ptr X, const size_t incX, const typename Field::Element beta, typename Field::Element_ptr Y, const size_t incY)
 finite prime Field GEneral Matrix Vector multiplication.
 
template<class Field >
void fger (const Field &F, const size_t M, const size_t N, const typename Field::Element alpha, typename Field::ConstElement_ptr x, const size_t incx, typename Field::ConstElement_ptr y, const size_t incy, typename Field::Element_ptr A, const size_t lda)
 fger: rank one update of a general matrix
 
template<class Field >
void ftrsv (const Field &F, const FFLAS_UPLO Uplo, const FFLAS_TRANSPOSE TransA, const FFLAS_DIAG Diag, const size_t N, typename Field::ConstElement_ptr A, const size_t lda, typename Field::Element_ptr X, int incX)
 ftrsv: TRiangular System solve with Vector Computes $ X \gets \mathrm{op}(A^{-1}) X$
 
template<class Field >
size_t bitsize (const Field &F, size_t M, size_t N, const typename Field::ConstElement_ptr A, size_t lda)
 bitsize: Computes the largest bitsize of the matrix' coefficients.
 
template<>
size_t bitsize< Givaro::ZRing< Givaro::Integer > > (const Givaro::ZRing< Givaro::Integer > &F, size_t M, size_t N, const Givaro::Integer *A, size_t lda)
 
template<class Field >
void ftrmv (const Field &F, const FFLAS_UPLO Uplo, const FFLAS_TRANSPOSE TransA, const FFLAS_DIAG Diag, const size_t N, typename Field::ConstElement_ptr A, const size_t lda, typename Field::Element_ptr X, int incX)
 ftrsm: TRiangular Matrix Vector prodcut Computes $ X \gets \mathrm{op}(A) X$
 

Macro Definition Documentation

◆ __FFLASFFPACK_fflas_fflas_level2_INL

#define __FFLASFFPACK_fflas_fflas_level2_INL