Go to the documentation of this file.
38 _varCount(multiply.getVarCount()),
39 _lcm(multiply.getVarCount()),
69 fputs(
"Slice (multiply: ", file);
71 fputs(
"\n ideal: ", file);
73 fputs(
" subtract: ", file);
118 bool changed = idealChanged || subtractChanged;
137 if (
getIdeal().getGeneratorCount() != count)
163 bool changed =
false;
169 for (
size_t var = 0; var <
_varCount; ++var) {
172 if (lowerBound[var] == 0 || lowerBound[var] > (*it)[var])
173 lowerBound[var] = (*it)[var];
190 bool removedAny =
false;
214 return lowerBoundChange || pruneSubtractChange;
240 getSubtract().insert(_lcm);
264 class PruneSubtractPredicate {
266 PruneSubtractPredicate(
const Ideal& ideal,
const Term&
lcm):
267 _ideal(ideal), _lcm(
lcm) {}
269 bool operator()(
const Exponent* term) {
272 _ideal.contains(term);
295 bool changed =
false;
296 size_t stepsWithNoChange = 0;
309 stepsWithNoChange = 0;
This class describes the interface of a strategy object for the Slice Algorithm.
static bool isIdentity(const Exponent *a, size_t varCount)
Returns whether a is 1, i.e. whether all entries of a are 0.
void resetAndSetVarCount(size_t varCount)
Resets this slice to in an ambient polynomial ring of varCount variables.
static size_t getSizeOfSupport(const Exponent *a, size_t varCount)
Returns the number of variables such that divides .
void clearIdealAndSubtract()
Clears getIdeal() and getSubtract() and does not change getMultiply().
Term _multiply
The of a slice .
Cont::const_iterator const_iterator
const_iterator begin() const
void reset(size_t newVarCount)
void print(FILE *file) const
Slice(SliceStrategy &strategy)
Construct the slice in a ring of zero variables.
void clearAndSetVarCount(size_t varCount)
bool pruneSubtract()
Removes those generators of subtract that do not strictly divide the lcm of getIdeal(),...
virtual void outerSlice(const Term &pivot)
Sets this object to the outer slice according to pivot.
virtual bool innerSlice(const Term &pivot)
Sets this object to the inner slice according to pivot.
size_t _lowerBoundHint
A hint that starting simplification through a lower bound at the variable indicated by _lowerBoundHin...
virtual void run(TaskEngine &tasks)
Does whatever work this task represents.
virtual Slice & operator=(const Slice &slice)=0
Performs a deep copy of slice into this object.
static void decrement(Exponent *a, size_t varCount)
Decrements each positive entry of a by one.
bool removeIf(Predicate pred)
Removes those generators m such that pred(m) evaluates to true.
bool domainVarHasProjection(size_t var) const
virtual bool simplify()
Simplifies this object such that it may become simpler without changing the content.
Term _lcm
The lcm of getIdeal() if _lcmUpdated is true, and otherwise the value is undefind.
size_t getVarCount() const
Returns the number of variables in the ambient ring.
void swap(hashtable< _Val, _Key, _HF, _Extract, _EqKey, _All > &__ht1, hashtable< _Val, _Key, _HF, _Extract, _EqKey, _All > &__ht2)
bool operator()(const Exponent *term)
size_t getVarCount() const
const Term & getLcm() const
Returns the least common multiple of the generators of getIdeal().
virtual void dispose()
Called when the task is no longer used but run has not and will not be called.
virtual bool processSlice(TaskEngine &tasks, auto_ptr< Slice > slice)=0
Process the parameter slice.
bool applyLowerBound()
Calculates a lower bound on the content of the slice using getLowerBound() and calls innerSlice with ...
size_t _varCount
The number of variables in the ambient polynomial ring.
static bool strictlyDivides(const Exponent *a, const Exponent *b, size_t varCount)
Returns whether a strictly divides b.
static void print(FILE *file, const Exponent *e, size_t varCount)
Writes e to file in a format suitable for debug output.
void project(Exponent *to, const Exponent *from) const
StrictMultiplePredicate(const Exponent *term, size_t varCount)
static void product(Exponent *res, const Exponent *a, const Exponent *b, size_t varCount)
Sets res equal to the product of a and b.
void singleDegreeSort(size_t var)
TaskEngine handles a list of tasks that are to be carried out.
size_t getGeneratorCount() const
bool colonReminimize(const Exponent *colon)
const_iterator end() const
This class represents a slice, which is the central data structure of the Slice Algorithm.
void swap(Slice &slice)
Simultaneously set the value of this object to that of slice and vice versa.
Term & getMultiply()
Returns for a slice .
Term represents a product of variables which does not include a coefficient.
const Ideal & getIdeal() const
Returns for a slice .
void removeStrictMultiples(const Exponent *term)
void setToProjOf(const Slice &slice, const Projection &projection)
Set this object to be the projection of slice according to projection.
size_t getVarCount() const
Ideal _ideal
The of a slice .
void singleDegreeSortIdeal(size_t var)
Calls Ideal::singleDegreeSort on getIdeal().
static void colon(Exponent *res, const Exponent *a, const Exponent *b, size_t varCount)
Sets res equal to .
void insertReminimize(const Exponent *term)
virtual void freeSlice(auto_ptr< Slice > slice)=0
It is allowed to delete returned slices directly, but it is better to use freeSlice.
void lcm(Word *res, const Word *resEnd, const Word *a, const Word *b)
size_t getFirstNonZeroExponent() const
size_t getRangeVarCount() const
Represents a monomial ideal with int exponents.
SliceStrategy & _strategy
void print(FILE *file) const
Write a text representation of this object to file in a format appropriate for debugging.
void getLcm(Exponent *lcm) const
Sets lcm to the least common multiple of all generators.
bool adjustMultiply()
Ensure that for each var, var appears to the first power in some generator of getIdeal().
bool _lcmUpdated
Indicates whether _lcm is correct.
static size_t getFirstNonZeroExponent(const Exponent *a, size_t varCount)
Returns least var such that a[var] is non-zero.
bool normalize()
Removes those generators of getIdeal() that are strictly divisible by some generator of getSubtract()...
Ideal & getSubtract()
Returns for a slice .
Ideal _subtract
The of a slice .
virtual bool getLowerBound(Term &bound, size_t var) const =0
Calculates a lower bound that depends on var.