40#ifndef GEOGRAM_MESH_MESH
41#define GEOGRAM_MESH_MESH
132 bool keep_attributes,
bool keep_memory =
false
150 if(nb_ + nb > attributes_.size()) {
153 new_capacity = std::max(
index_t(16),attributes_.size());
154 while(new_capacity < nb_ + nb) {
158 attributes_.reserve(new_capacity);
161 attributes_.resize(nb_);
172 if(attributes_.capacity() < nb_) {
174 std::max(
index_t(16),attributes_.capacity()*2);
175 attributes_.reserve(new_capacity);
177 attributes_.resize(nb_);
191 attributes_.resize(nb_);
205 bool copy_attributes =
true
208 if(copy_attributes) {
209 attributes_.copy(rhs.attributes_);
211 attributes_.clear(
false,
false);
212 attributes_.resize(rhs.attributes_.
size());
248 bool remove_isolated_vertices=
true
275 bool keep_attributes=
true,
bool keep_memory=
false
304 class MeshFacetCornersStore;
305 class MeshCellCornersStore;
334 return MeshSubElementsStore::create_sub_element();
349 coords < point_ptr(0) ||
350 coords >= point_ptr(0) + nb() * dimension()
352 index_t result = create_vertex();
353 for(
index_t c=0; c<dimension(); ++c) {
354 point_ptr(result)[c] = coords[c];
365 return MeshSubElementsStore::create_sub_elements(nb);
369 bool keep_attributes=
true,
bool keep_memory=
false
398 return point_fp32_.is_bound();
409 return point_.is_bound();
419 point_fp32_.dimension() :
430 if(single_precision()) {
431 point_fp32_.redim(dim);
447 return &point_[v*point_.dimension()];
460 return &point_[v*point_.dimension()];
475 return *(
vec3*)(&point_[v*point_.dimension()]);
489 return *(
const vec3*)(&point_[v*point_.dimension()]);
502 return &point_fp32_[v*point_fp32_.dimension()];
515 return &point_fp32_[v*point_fp32_.dimension()];
548 bool keep_attributes,
bool keep_memory =
false
553 void bind_point_attribute(
index_t dim,
bool single_precision=
false);
555 void copy(
const MeshVertices& rhs,
bool copy_attributes=
true) {
557 if(point_fp32_.is_bound()) {
558 point_fp32_.destroy();
560 if(point_.is_bound()) {
563 MeshSubElementsStore::copy(rhs, copy_attributes);
565 point_fp32_.bind_if_is_defined(attributes(),
"point_fp32");
566 if(!point_fp32_.is_bound()) {
567 point_fp32_.create_vector_attribute(
568 attributes(),
"point_fp32", dim
572 point_.bind_if_is_defined(attributes(),
"point");
573 if(!point_.is_bound()) {
574 point_.create_vector_attribute(
575 attributes(),
"point", dim
581 if(!copy_attributes) {
584 single_precision_point_ptr(0),
599 MeshFacetCornersStore& facet_corners_;
600 MeshCellCornersStore& cell_corners_;
601 Attribute<double> point_;
602 Attribute<float> point_fp32_;
605 friend class GeogramIOHandler;
629 return edge_vertex_[2*e+lv];
641 edge_vertex_[2*e+lv] = v;
653 return &(edge_vertex_[c]);
664 return &(edge_vertex_[c]);
672 return create_sub_element();
681 return create_sub_elements(nb);
690 index_t result = create_edge();
691 set_vertex(result,0,v1);
692 set_vertex(result,1,v2);
703 bool keep_attributes=
true,
bool keep_memory=
false
710 bool keep_attributes,
bool keep_memory =
false
716 edge_vertex_.push_back(NO_VERTEX);
717 edge_vertex_.push_back(NO_VERTEX);
718 return MeshSubElementsStore::create_sub_element();
722 edge_vertex_.resize(2*(nb()+nb_in),NO_VERTEX);
723 return MeshSubElementsStore::create_sub_elements(nb_in);
726 void copy(
const MeshEdges& rhs,
bool copy_attributes=
true) {
727 MeshSubElementsStore::copy(rhs, copy_attributes);
728 edge_vertex_ = rhs.edge_vertex_;
731 vector<index_t> edge_vertex_;
733 friend class GeogramIOHandler;
754 return (is_simplicial_ ? 3*f : facet_ptr_[f]);
765 return (is_simplicial_ ? 3*(f+1): facet_ptr_[f+1]);
775 return (is_simplicial_ ? 3 : facet_ptr_[f+1] - facet_ptr_[f]);
788 return corners_begin(f)+lv;
799 return is_simplicial_;
811 return &facet_ptr_[f];
816 bool keep_attributes,
bool keep_memory =
false
822 if(!is_simplicial_) {
823 facet_ptr_.push_back(NO_CORNER);
825 return MeshSubElementsStore::create_sub_element();
828 index_t create_sub_elements(index_t nb) {
829 if(!is_simplicial_) {
830 for(index_t i=0; i<nb; ++i) {
831 facet_ptr_.push_back(NO_CORNER);
834 return MeshSubElementsStore::create_sub_elements(nb);
837 void copy(
const MeshFacetsStore& rhs,
bool copy_attributes=
true) {
838 MeshSubElementsStore::copy(rhs,copy_attributes);
839 is_simplicial_ = rhs.is_simplicial_;
840 facet_ptr_ = rhs.facet_ptr_;
845 vector<index_t> facet_ptr_;
847 friend class GeogramIOHandler;
867 return corner_vertex_[c];
878 return corner_adjacent_facet_[c];
890 return &corner_adjacent_facet_[c];
903 return &corner_adjacent_facet_[c];
915 corner_vertex_[c] = v;
930 corner_vertex_[c] = v;
942 corner_adjacent_facet_[c] = f;
954 return &(corner_vertex_[c]);
966 return &(corner_vertex_[c]);
971 bool keep_attributes,
bool keep_memory =
false
977 corner_vertex_.push_back(v);
978 corner_adjacent_facet_.push_back(f);
979 return MeshSubElementsStore::create_sub_element();
984 corner_vertex_.push_back(NO_VERTEX);
986 for(index_t i=0; i<nb; ++i) {
987 corner_adjacent_facet_.push_back(NO_FACET);
989 return MeshSubElementsStore::create_sub_elements(nb);
993 const MeshFacetCornersStore& rhs,
bool copy_attributes=
true
995 MeshSubElementsStore::copy(rhs, copy_attributes);
996 corner_vertex_ = rhs.corner_vertex_;
997 corner_adjacent_facet_ = rhs.corner_adjacent_facet_;
1001 MeshVertices& vertices_;
1002 MeshFacetsStore& facets_;
1003 vector<index_t> corner_vertex_;
1004 vector<index_t> corner_adjacent_facet_;
1006 friend class MeshFacets;
1008 friend class GeogramIOHandler;
1033 return nb_corners(f);
1044 return facet_corners_.vertex(corner(f,lv));
1055 facet_corners_.set_vertex(corner(f,lv),v);
1066 for(
index_t lv=0; lv<nb_vertices(f); ++lv) {
1067 if(vertex(f,lv) == v) {
1081 for(
index_t lv=0; lv<nb_vertices(f1); ++lv) {
1083 if(find_vertex(f2,v) != NO_VERTEX) {
1098 return facet_corners_.adjacent_facet(corner(f,le));
1109 for(
index_t le=0; le<nb_vertices(f); ++le) {
1110 if(adjacent(f,le) == f2) {
1125 facet_corners_.set_adjacent_facet(corner(f,le),f2);
1138 return c + 1 == corners_end(f) ? corners_begin(f) : c + 1;
1151 return c == corners_begin(f) ? corners_end(f) - 1 : c - 1;
1156 bool remove_isolated_vertices=
true
1162 bool keep_attributes=
true,
bool keep_memory=
false
1175 if(nb_vertices_per_polygon != 3) {
1176 is_not_simplicial();
1180 index_t co = facet_corners_.nb();
1181 facet_corners_.create_sub_elements(
1182 nb_facets*nb_vertices_per_polygon
1184 index_t result = create_sub_elements(nb_facets);
1186 if(!is_simplicial_) {
1187 for(
index_t f=first_facet; f<=first_facet+nb_facets; ++f) {
1189 co += nb_vertices_per_polygon;
1203 return create_facets(nb_triangles, 3);
1212 return create_facets(nb_quads, 4);
1221 facet_corners_.create_sub_element(v1);
1222 facet_corners_.create_sub_element(v2);
1223 facet_corners_.create_sub_element(v3);
1224 index_t result = create_sub_element();
1225 if(!is_simplicial_) {
1226 facet_ptr_[result+1] = facet_corners_.nb();
1239 is_not_simplicial();
1240 facet_corners_.create_sub_element(v1);
1241 facet_corners_.create_sub_element(v2);
1242 facet_corners_.create_sub_element(v3);
1243 facet_corners_.create_sub_element(v4);
1244 index_t result = create_sub_element();
1245 facet_ptr_[result+1] = facet_corners_.nb();
1257 if(nb_vertices != 3) {
1258 is_not_simplicial();
1260 for(
index_t i=0; i<nb_vertices; ++i) {
1261 facet_corners_.create_sub_element(NO_VERTEX);
1263 index_t result = create_sub_element();
1264 if(!is_simplicial_) {
1265 facet_ptr_[result+1] = facet_corners_.nb();
1279 if(nb_vertices != 3) {
1280 is_not_simplicial();
1282 for(
index_t i=0; i<nb_vertices; ++i) {
1283 facet_corners_.create_sub_element(vertices[i]);
1285 index_t result = create_sub_element();
1286 if(!is_simplicial_) {
1287 facet_ptr_[result+1] = facet_corners_.nb();
1301 return create_polygon(vertices.
size(), vertices.
data());
1355 void assign_triangle_mesh(
1381 if(!is_simplicial_) {
1382 is_simplicial_ =
true;
1383 facet_ptr_.resize(1);
1395 if(is_simplicial_) {
1396 is_simplicial_ =
false;
1397 facet_ptr_.resize(nb()+1);
1398 for(
index_t f=0; f<facet_ptr_.size(); ++f) {
1399 facet_ptr_[f] = 3*f;
1408 friend class GeogramIOHandler;
1422 MESH_NB_CELL_TYPES = 5
1467 namespace MeshCellDescriptors {
1497 return is_simplicial_;
1508 return is_simplicial_ ? MESH_TET : MeshCellType(cell_type_[c]);
1521 return is_simplicial_ ? MeshCellDescriptors::tet_descriptor :
1523 MeshCellDescriptors::cell_type_to_cell_descriptor[
1542 return *(MeshCellDescriptors::cell_type_to_cell_descriptor[t]);
1552 return descriptor(c).nb_vertices;
1563 return is_simplicial_ ? 4*c : cell_ptr_[c];
1574 return is_simplicial_ ? 4*(c+1) : cell_ptr_[c] + nb_corners(c);
1587#ifndef GEO_OS_WINDOWS
1590 return corners_begin(c) + lv;
1600 return descriptor(c).nb_facets;
1611 return is_simplicial_ ? 4*c : cell_ptr_[c];
1622 return is_simplicial_ ? 4*(c+1) : cell_ptr_[c] + nb_facets(c);
1634 return facets_begin(c) + lf;
1643 return descriptor(c).nb_edges;
1648 bool keep_attributes,
bool keep_memory =
false
1653 index_t create_sub_element(MeshCellType type) {
1654 if(!is_simplicial_) {
1655 cell_ptr_.push_back(NO_CORNER);
1658 return MeshSubElementsStore::create_sub_element();
1661 index_t create_sub_elements(index_t nb, MeshCellType type) {
1662 if(!is_simplicial_) {
1663 for(index_t i=0; i<nb; ++i) {
1664 cell_ptr_.push_back(NO_CORNER);
1665 cell_type_.push_back(Numeric::uint8(type));
1668 return MeshSubElementsStore::create_sub_elements(nb);
1672 const MeshCellsStore& rhs,
bool copy_attributes=
true
1674 MeshSubElementsStore::copy(rhs, copy_attributes);
1675 is_simplicial_ = rhs.is_simplicial_;
1676 cell_type_ = rhs.cell_type_;
1677 cell_ptr_ = rhs.cell_ptr_;
1681 bool is_simplicial_;
1682 vector<Numeric::uint8> cell_type_;
1683 vector<index_t> cell_ptr_;
1687 friend class GeogramIOHandler;
1707 return corner_vertex_[c];
1718 corner_vertex_[c] = v;
1730 return &(corner_vertex_[c]);
1742 return &(corner_vertex_[c]);
1747 bool keep_attributes,
bool keep_memory =
false
1753 corner_vertex_.push_back(v);
1754 return MeshSubElementsStore::create_sub_element();
1759 corner_vertex_.push_back(NO_VERTEX);
1761 return MeshSubElementsStore::create_sub_elements(nb);
1765 const MeshCellCornersStore& rhs,
bool copy_attributes=
true
1767 MeshSubElementsStore::copy(rhs, copy_attributes);
1768 corner_vertex_ = rhs.corner_vertex_;
1772 MeshVertices& vertices_;
1773 vector<index_t> corner_vertex_;
1775 friend class MeshCells;
1777 friend class GeogramIOHandler;
1802 return adjacent_cell_[f];
1815 adjacent_cell_[f] = c;
1826 return &adjacent_cell_[f];
1837 return &adjacent_cell_[f];
1842 bool keep_attributes,
bool keep_memory =
false
1848 adjacent_cell_.push_back(c);
1849 return MeshSubElementsStore::create_sub_element();
1854 adjacent_cell_.push_back(NO_CELL);
1856 return MeshSubElementsStore::create_sub_elements(nb);
1860 const MeshCellFacetsStore& rhs,
bool copy_attributes=
true
1862 MeshSubElementsStore::copy(rhs, copy_attributes);
1863 adjacent_cell_ = rhs.adjacent_cell_;
1867 MeshVertices& vertices_;
1868 MeshCellsStore& cells_;
1869 vector<index_t> adjacent_cell_;
1871 friend class MeshCells;
1873 friend class GeogramIOHandler;
1896 return nb_corners(c);
1906 return cell_corners_.vertex(corner(c,lv));
1916 cell_corners_.set_vertex(corner(c,lv),v);
1927 return cell_facets_.adjacent_cell(facet(c,lf));
1938 cell_facets_.set_adjacent_cell(facet(c,lf),c2);
1949 return descriptor(c).nb_vertices_in_facet[lf];
1962 return cell_corners_.vertex(
1963 corner(c, descriptor(c).facet_vertex[lf][lv])
1976 return corner(c, descriptor(c).facet_vertex[lf][lc]);
1990 return cell_corners_.vertex(
1991 corner(c,descriptor(c).edge_vertex[le][lv])
2008 return descriptor(c).edge_adjacent_facet[le][lf];
2025 bool keep_attributes=
true,
bool keep_memory=
false
2030 bool remove_isolated_vertices=
true
2050 if(type != MESH_TET) {
2051 is_not_simplicial();
2062 index_t co = cell_corners_.nb();
2064 cell_corners_.create_sub_elements(
2068 cell_facets_.create_sub_elements(
2072 index_t result = create_sub_elements(nb_cells, type);
2074 if(!is_simplicial_) {
2075 for(
index_t c=first_cell; c<=first_cell+nb_cells; ++c) {
2094 return create_cells(nb_tets, MESH_TET);
2103 return create_cells(nb_hexes, MESH_HEX);
2112 return create_cells(nb_prisms, MESH_PRISM);
2121 return create_cells(nb_pyramids, MESH_PYRAMID);
2139 cell_corners_.create_sub_element(v1);
2140 cell_corners_.create_sub_element(v2);
2141 cell_corners_.create_sub_element(v3);
2142 cell_corners_.create_sub_element(v4);
2143 cell_facets_.create_sub_element(adj1);
2144 cell_facets_.create_sub_element(adj2);
2145 cell_facets_.create_sub_element(adj3);
2146 cell_facets_.create_sub_element(adj4);
2147 index_t result = create_sub_element(MESH_TET);
2148 if(!is_simplicial_) {
2149 cell_ptr_[nb()] = cell_corners_.nb();
2174 is_not_simplicial();
2175 cell_corners_.create_sub_element(v1);
2176 cell_corners_.create_sub_element(v2);
2177 cell_corners_.create_sub_element(v3);
2178 cell_corners_.create_sub_element(v4);
2179 cell_corners_.create_sub_element(v5);
2180 cell_corners_.create_sub_element(v6);
2181 cell_corners_.create_sub_element(v7);
2182 cell_corners_.create_sub_element(v8);
2183 cell_facets_.create_sub_element(adj1);
2184 cell_facets_.create_sub_element(adj2);
2185 cell_facets_.create_sub_element(adj3);
2186 cell_facets_.create_sub_element(adj4);
2187 cell_facets_.create_sub_element(adj5);
2188 cell_facets_.create_sub_element(adj6);
2189 cell_facets_.create_sub_element(NO_CELL);
2190 cell_facets_.create_sub_element(NO_CELL);
2191 index_t result = create_sub_element(MESH_HEX);
2192 cell_ptr_[nb()] = cell_corners_.nb();
2216 is_not_simplicial();
2217 cell_corners_.create_sub_element(v1);
2218 cell_corners_.create_sub_element(v2);
2219 cell_corners_.create_sub_element(v3);
2220 cell_corners_.create_sub_element(v4);
2221 cell_corners_.create_sub_element(v5);
2222 cell_corners_.create_sub_element(v6);
2223 cell_facets_.create_sub_element(adj1);
2224 cell_facets_.create_sub_element(adj2);
2225 cell_facets_.create_sub_element(adj3);
2226 cell_facets_.create_sub_element(adj4);
2227 cell_facets_.create_sub_element(adj5);
2228 cell_facets_.create_sub_element(NO_CELL);
2229 index_t result = create_sub_element(MESH_PRISM);
2230 cell_ptr_[nb()] = cell_corners_.nb();
2252 is_not_simplicial();
2253 cell_corners_.create_sub_element(v1);
2254 cell_corners_.create_sub_element(v2);
2255 cell_corners_.create_sub_element(v3);
2256 cell_corners_.create_sub_element(v4);
2257 cell_corners_.create_sub_element(v5);
2258 cell_facets_.create_sub_element(adj1);
2259 cell_facets_.create_sub_element(adj2);
2260 cell_facets_.create_sub_element(adj3);
2261 cell_facets_.create_sub_element(adj4);
2262 cell_facets_.create_sub_element(adj5);
2263 index_t result = create_sub_element(MESH_PYRAMID);
2264 cell_ptr_[nb()] = cell_corners_.nb();
2287 is_not_simplicial();
2288 cell_corners_.create_sub_element(v1);
2289 cell_corners_.create_sub_element(v2);
2290 cell_corners_.create_sub_element(v3);
2291 cell_corners_.create_sub_element(v4);
2292 cell_facets_.create_sub_element(adj1);
2293 cell_facets_.create_sub_element(adj2);
2294 cell_facets_.create_sub_element(adj3);
2295 cell_facets_.create_sub_element(NO_CELL);
2296 index_t result = create_sub_element(MESH_CONNECTOR);
2297 cell_ptr_[nb()] = cell_corners_.nb();
2313 bool remove_trivial_slivers =
true,
bool verbose_if_OK=
false
2367 return cell_facets_.adjacent_cell_[4*t+lf];
2374 for(
index_t lf=0; lf<4; ++lf) {
2375 if(cell_facets_.adjacent_cell_[4*t+lf] == t2) {
2382 index_t tet_vertex(index_t t, index_t lv)
const {
2386 return cell_corners_.corner_vertex_[4*t+lv];
2389 index_t find_tet_vertex(index_t t, index_t v)
const {
2393 for(index_t lv=0; lv<4; ++lv) {
2394 if(cell_corners_.corner_vertex_[4*t+lv] == v) {
2418 return cell_corners_.vertex(
2419 4 * t + local_tet_facet_vertex_index(lf,lv)
2440 for(
index_t lf = 0; lf < 4; ++lf) {
2441 index_t w1 = tet_facet_vertex(t, lf, 0);
2442 index_t w2 = tet_facet_vertex(t, lf, 1);
2443 index_t w3 = tet_facet_vertex(t, lf, 2);
2445 (v1 == w1 && v2 == w2 && v3 == w3) ||
2446 (v1 == w2 && v2 == w3 && v3 == w1) ||
2447 (v1 == w3 && v2 == w1 && v3 == w2)
2466 return MeshCellDescriptors::tet_descriptor.facet_vertex[lf][lv];
2478 if(is_simplicial_) {
2479 is_simplicial_ =
false;
2480 cell_ptr_.resize(nb()+1);
2481 cell_type_.assign(nb(), MESH_TET);
2482 for(
index_t c=0; c<cell_ptr_.size(); ++c) {
2514 for(
index_t lv=0; lv<nb_vertices(c); ++lv) {
2515 if(vertex(c,lv) == v) {
2536 for(
index_t f1=0; f1<nb_facets(c1); ++f1) {
2537 if(facets_match(c1,f1,c2,f2)) {
2601 const std::vector< std::pair<index_t, index_t> >& matches
2615 friend class GeogramIOHandler;
2633 MESH_ALL_ELEMENTS = 15,
2634 MESH_FACET_CORNERS = 16,
2635 MESH_CELL_CORNERS = 32,
2636 MESH_CELL_FACETS = 64,
2637 MESH_ALL_SUBELEMENTS = 65
2682 void clear(
bool keep_attributes=
true,
bool keep_memory=
false);
2712 bool copy_attributes=
true,
2796 const std::string& name
2814 const std::string& full_attribute_name,
2816 std::string& attribute_name,
2829 const std::string& tag,
const std::string& subelement_name,
2850 const Mesh& operator=(
const Mesh& rhs);
#define geo_assert(x)
Verifies that a condition is met.
#define geo_debug_assert(x)
Verifies that a condition is met.
Generic mechanism for attributes.
Common include file, providing basic definitions. Should be included before anything else by all head...
Manages an attribute attached to a set of object.
Managers a set of attributes attached to an object.
index_t size() const
Gets the size.
Stores the cell facets of a mesh (low-level store)
index_t adjacent_cell(index_t f) const
Gets a cell adjacent to a facet.
void resize_store(index_t new_size) override
Resizes this MeshSubElementsStore.
index_t * adjacent_cell_ptr(index_t f)
Gets a pointer to a cell adjacent to a facet.
void clear_store(bool keep_attributes, bool keep_memory=false) override
Removes all the elements and attributes.
const index_t * adjacent_cell_ptr(index_t f) const
Gets a const pointer to a cell adjacent to a facet.
MeshCellFacetsStore(Mesh &mesh)
MeshCellFacetsStore constructor.
void set_adjacent_cell(index_t f, index_t c)
Sets a cell adjacent to a facet.
Stores the cells of a mesh (low-level store)
index_t facet(index_t c, index_t lf) const
Gets a facet of a cell by local facet index.
bool are_simplices() const
Tests whether all the cells are tetrahedra.
static const CellDescriptor & cell_type_to_cell_descriptor(MeshCellType t)
Gets a descriptor by cell type.
const CellDescriptor & descriptor(index_t c) const
Gets the descriptor of a cell.
index_t corner(index_t c, index_t lv) const
Gets a corner of a cell by local vertex index.
index_t nb_facets(index_t c) const
Gets the number of facets of a cell.
index_t corners_end(index_t c) const
Gets the upper limit for iterating over the corners of a cell.
MeshCellType type(index_t c) const
Gets the type of a cell.
index_t facets_end(index_t c) const
Gets the upper limit for iterating over the facets of a cell.
index_t nb_corners(index_t c) const
Gets the number of corners of a cell.
index_t corners_begin(index_t c) const
Gets the first element for iterating over the corners of a cell.
void resize_store(index_t new_size) override
Resizes this MeshSubElementsStore.
index_t nb_edges(index_t c) const
Gets the number of edges in a cell.
void clear_store(bool keep_attributes, bool keep_memory=false) override
Removes all the elements and attributes.
index_t facets_begin(index_t c) const
Gets the first element for iterating over the facets of a cell.
index_t create_cells(index_t nb_cells, MeshCellType type)
Creates a contiguous chunk of cells of the same type.
void pop() override
Removes the last element.
void compute_borders()
Replaces the surfacic part of this mesh with the borders of the volumetric part.
void set_vertex(index_t c, index_t lv, index_t v)
Sets a vertex of a cell by local vertex index.
index_t create_pyramids(index_t nb_pyramids)
Creates a contiguous chunk of pyramids.
void assign_tet_mesh(vector< index_t > &tets, bool steal_args)
Copies a tetrahedron mesh into this Mesh.
index_t adjacent(index_t c, index_t lf) const
Gets a cell adjacent to another one by local facet index.
void assign_tet_mesh(coord_index_t dim, vector< double > &vertices, vector< index_t > &tets, bool steal_args)
Copies a tetrahedron mesh into this Mesh.
bool triangular_facets_have_common_edge(index_t c1, index_t f1, index_t c2, index_t f2, index_t &e1, index_t &e2) const
Tests whether two triangular cell facets have a common edge.
bool facets_match(index_t c1, index_t f1, index_t c2, index_t f2) const
Tests whether two cell facets can be connected.
index_t create_connector(index_t v1, index_t v2, index_t v3, index_t v4, index_t adj1=NO_CELL, index_t adj2=NO_CELL, index_t adj3=NO_CELL)
Creates a connector.
index_t tet_facet_vertex(index_t t, index_t lf, index_t lv) const
Gets a vertex of a tetrahedron by local facet index and local vertex index in facet.
MeshCells(Mesh &mesh)
MeshCells constructor.
index_t edge_vertex(index_t c, index_t le, index_t lv) const
Gets a cell vertex by local edge index and local vertex index in the edge.
range< no_iterator > corners(index_t c) const
Gets the corners of a cell.
void connect(bool remove_trivial_slivers=true, bool verbose_if_OK=false)
Connects the cells.
static index_t local_tet_facet_vertex_index(index_t lf, index_t lv)
Gives the local index of a vertex in a tetrahedron from its facet and vertex local indices.
index_t create_prism(index_t v1, index_t v2, index_t v3, index_t v4, index_t v5, index_t v6, index_t adj1=NO_CELL, index_t adj2=NO_CELL, index_t adj3=NO_CELL, index_t adj4=NO_CELL, index_t adj5=NO_CELL)
Creates a prism.
index_t nb_vertices(index_t c) const
Gets the number of vertices of a cell.
index_t facet_vertex(index_t c, index_t lf, index_t lv) const
Gets a vertex of a cell by local facet index and local vertex index in the facet.
void delete_elements(vector< index_t > &to_delete, bool remove_isolated_vertices=true) override
Deletes a set of elements.
index_t create_pyramid(index_t v1, index_t v2, index_t v3, index_t v4, index_t v5, index_t adj1=NO_CELL, index_t adj2=NO_CELL, index_t adj3=NO_CELL, index_t adj4=NO_CELL, index_t adj5=NO_CELL)
Creates a pyramid.
index_t find_tet_facet(index_t t, index_t v1, index_t v2, index_t v3) const
Finds the local index of a facet in a tetrahedron by the global indices of its vertices.
void permute_elements(vector< index_t > &permutation) override
Applies a permutation to the elements and their attributes.
void is_not_simplicial()
Indicates that the stored elements are no longer only tetrahedra.
index_t facet_corner(index_t c, index_t lf, index_t lc) const
Gets a corner of a cell by local facet index and local corner index in the facet.
index_t find_cell_vertex(index_t c, index_t v) const
Finds the local index of a vertex in a cell.
index_t create_hexes(index_t nb_hexes)
Creates a contiguous chunk of hexahedra.
index_t create_tets(index_t nb_tets)
Creates a contiguous chunk of tetrahedra.
index_t edge_adjacent_facet(index_t c, index_t le, index_t lf) const
Gets a cell local facet index by local edge index and local facet index in the edge.
void compute_borders(Attribute< index_t > &facet_cell)
Replaces the surfacic part of this mesh with the borders of the volumetric part.
bool create_connector(index_t c1, index_t lf1, const std::vector< std::pair< index_t, index_t > > &matches)
Creates a connector between a quadrandular facet and two triangular facets.
void set_adjacent(index_t c, index_t lf, index_t c2)
Sets a cell adjacent to another one by local facet index.
void clear(bool keep_attributes=true, bool keep_memory=false) override
Removes all the elements and attributes.
index_t create_prisms(index_t nb_prisms)
Creates a contiguous chunk of prisms.
index_t create_tet(index_t v1, index_t v2, index_t v3, index_t v4, index_t adj1=NO_CELL, index_t adj2=NO_CELL, index_t adj3=NO_CELL, index_t adj4=NO_CELL)
Creates a tetrahedron.
index_t create_hex(index_t v1, index_t v2, index_t v3, index_t v4, index_t v5, index_t v6, index_t v7, index_t v8, index_t adj1=NO_CELL, index_t adj2=NO_CELL, index_t adj3=NO_CELL, index_t adj4=NO_CELL, index_t adj5=NO_CELL, index_t adj6=NO_CELL)
Creates an hexahedron.
void connect_tets()
Optimized implementation of connect() used when the mesh is simplicial.
index_t facet_nb_vertices(index_t c, index_t lf) const
Gets the number of vertices in a cell facet.
bool triangular_facet_matches_quad_facet(index_t c1, index_t lf1, index_t c2, index_t lf2) const
Tests whether a triangular facet matches a quad facet.
index_t find_cell_facet(index_t c1, index_t c2, index_t f2) const
Finds the local index of a facet in a cell that can be connected to a facet of another cell.
index_t vertex(index_t c, index_t lv) const
Gets a vertex of a cell by local vertex index.
index_t vertex(index_t e, index_t lv) const
Gets the index of an edge vertex.
void clear_store(bool keep_attributes, bool keep_memory=false) override
Removes all the elements and attributes.
void pop() override
Removes the last element.
const index_t * vertex_index_ptr(index_t c) const
Gets a pointer to a vertex index by corner index.
void clear(bool keep_attributes=true, bool keep_memory=false) override
Removes all the elements and attributes.
index_t create_edge(index_t v1, index_t v2)
Creates a new edge.
index_t create_edge()
Creates a new edge.
void permute_elements(vector< index_t > &permutation) override
Applies a permutation to the elements and their attributes.
index_t create_edges(index_t nb)
Creates a batch of edges.
index_t * vertex_index_ptr(index_t c)
Gets a pointer to a vertex index by corner index.
void resize_store(index_t new_size) override
Resizes this MeshSubElementsStore.
void delete_elements(vector< index_t > &to_delete, bool remove_isolated_vertices=true) override
Deletes a set of elements.
void set_vertex(index_t e, index_t lv, index_t v)
Sets a vertex of an edge.
Base class for mesh elements.
virtual void delete_elements(vector< index_t > &to_delete, bool remove_isolated_vertices=true)=0
Deletes a set of elements.
static bool has_non_zero(const GEO::vector< index_t > &I)
Tests whether a vector contains a non-zero value.
virtual void clear(bool keep_attributes=true, bool keep_memory=false)=0
Removes all the elements and attributes.
virtual void pop()=0
Removes the last element.
virtual void permute_elements(vector< index_t > &permutation)=0
Applies a permutation to the elements and their attributes.
Stores the facets of a mesh (low-level store)
index_t corner(index_t f, index_t lv) const
Gets a corner by facet and local vertex index.
index_t corners_end(index_t f) const
Gets the upper limit for iterating over the corners of a facet.
index_t nb_corners(index_t f) const
Gets the number of corners in a facet.
const index_t * corners_begin_ptr(index_t f) const
Gets a pointer to the first element for iterating over the corners of a facet.
void clear_store(bool keep_attributes, bool keep_memory=false) override
Removes all the elements and attributes.
void resize_store(index_t new_size) override
Resizes this MeshSubElementsStore.
bool are_simplices() const
Tests whether all the facets are triangles.
index_t corners_begin(index_t f) const
Gets the first element for iterating over the corners of a facet.
index_t create_triangle(index_t v1, index_t v2, index_t v3)
Creates a triangle.
range< no_iterator > corners(index_t f) const
Gets the corners of a facet.
void compute_borders()
Replaces the edges of this mesh with the borders of the surfacic part.
void clear(bool keep_attributes=true, bool keep_memory=false) override
Removes all the elements and attributes.
index_t create_quad(index_t v1, index_t v2, index_t v3, index_t v4)
Creates a quad.
index_t create_polygon(const vector< index_t > &vertices)
Creates a polygonal facet.
void is_not_simplicial()
Indicates that the stored elements are no longer only triangles.
void triangulate()
Triangulates the facets.
MeshFacets(Mesh &mesh)
MeshFacets constructor.
friend void tessellate_facets(Mesh &M, index_t max_nb_vertices)
Subdivides the facets with more than nb_vertices.
index_t vertex(index_t f, index_t lv) const
Gets a vertex by facet and local vertex index.
void permute_elements(vector< index_t > &permutation) override
Applies a permutation to the elements and their attributes.
index_t nb_vertices(index_t f) const
Gets the number of vertices of a facet.
void is_simplicial()
Indicates that the stored elements are only triangles.
void delete_elements(vector< index_t > &to_delete, bool remove_isolated_vertices=true) override
Deletes a set of elements.
void connect()
Connects the facets.
void flip(index_t f)
Flips a facet.
index_t create_polygon(index_t nb_vertices)
Creates a polygonal facet.
index_t create_polygon(index_t nb_vertices, const index_t *vertices)
Creates a polygonal facet.
void set_vertex(index_t f, index_t lv, index_t v)
Sets a vertex by facet and local vertex index.
index_t find_common_vertex(index_t f1, index_t f2) const
finds a common vertex shared by two facets
void pop() override
Removes the last element.
index_t find_vertex(index_t f, index_t v) const
Gets the local index of a vertex in a facet.
index_t find_adjacent(index_t f, index_t f2) const
Gets the local index of a facet adjacent to another one.
index_t prev_corner_around_facet(index_t f, index_t c) const
Gets the predecessor of a corner around a facet.
void assign_triangle_mesh(coord_index_t dim, vector< double > &vertices, vector< index_t > &triangles, bool steal_args)
Copies a triangle mesh into this Mesh.
index_t create_quads(index_t nb_quads)
Creates a contiguous chunk of quads.
index_t create_facets(index_t nb_facets, index_t nb_vertices_per_polygon)
Creates a contiguous chunk of facets.
index_t adjacent(index_t f, index_t le) const
Gets an adjacent facet by facet and local edge index.
void set_adjacent(index_t f, index_t le, index_t f2)
Sets an adjacent facet by facet and local edge index.
index_t create_triangles(index_t nb_triangles)
Creates a contiguous chunk of triangles.
index_t next_corner_around_facet(index_t f, index_t c) const
Gets the successor of a corner around a facet.
Base class for mesh sub-element storage.
virtual ~MeshSubElementsStore()
MeshElementStore destructor.
AttributesManager & attributes() const
Gets the attributes manager.
no_iterator begin() const
Used by range-based for.
MeshSubElementsStore(Mesh &mesh)
Constructs a new MeshSubElementStore.
index_t create_sub_element()
Creates attributes for a sub-element.
virtual void clear_store(bool keep_attributes, bool keep_memory=false)
Removes all the elements and attributes.
index_t create_sub_elements(index_t nb)
Creates a contiguous chunk of attributes for sub-elements.
index_t nb() const
Gets the number of (sub-)elements.
void copy(const MeshSubElementsStore &rhs, bool copy_attributes=true)
Copies a MeshSubElementsStore into this one.
no_iterator end() const
Used by range-based for.
void adjust_store()
Makes the size of the store tightly match the number of the elements.
virtual void resize_store(index_t new_size)
Resizes this MeshSubElementsStore.
void pop() override
Removes the last element.
void resize_store(index_t new_size) override
Resizes this MeshSubElementsStore.
void clear(bool keep_attributes=true, bool keep_memory=false) override
Removes all the elements and attributes.
index_t create_vertex(const double *coords)
Creates a new vertex.
void assign_points(const double *points, index_t dim, index_t nb_pts)
Assigns all the points.
const float * single_precision_point_ptr(index_t v) const
Gets a (single-precision) point.
const double * point_ptr(index_t v) const
Gets a point.
float * single_precision_point_ptr(index_t v)
Gets a (single-precision) point.
void remove_isolated()
Removes the vertices that have no mesh element incident to them.
void set_dimension(index_t dim)
Sets the dimension of the vertices.
void set_double_precision()
Sets double precision mode.
vec3 & point(index_t v)
Gets a point.
void clear_store(bool keep_attributes, bool keep_memory=false) override
Removes all the elements and attributes.
const vec3 & point(index_t v) const
Gets a point.
void permute_elements(vector< index_t > &permutation) override
Applies a permutation to the elements and their attributes.
void assign_points(vector< double > &points, index_t dim, bool steal_arg)
Assigns all the points.
bool double_precision() const
Tests whether vertices are stored in double-precision mode.
bool single_precision() const
Tests whether vertices are stored in single-precision mode.
index_t dimension() const
Gets the dimension of the vertices.
index_t create_vertices(index_t nb)
Creates a contiguous chunk of vertices.
void set_single_precision()
Sets single precision mode.
double * point_ptr(index_t v)
Gets a point.
index_t create_vertex()
Creates a new vertex.
void delete_elements(vector< index_t > &to_delete, bool remove_isolated_vertices=true) override
Deletes a set of elements.
Mesh(index_t dimension=3, bool single_precision=false)
Mesh constructor.
void copy(const Mesh &rhs, bool copy_attributes=true, MeshElementsFlags what=MESH_ALL_ELEMENTS)
Copies a mesh onto this one.
MeshElementsFlags
Indicates the mesh elements (vertices, facets or cells) present in a mesh.
MeshSubElementsStore & get_subelements_by_index(index_t i)
Gets a MeshSubElementsStore by index.
index_t nb_subelements_types() const
Gets the number of subelements types.
void assert_is_valid()
Does some validity checks.
static std::string subelements_type_to_name(MeshElementsFlags what)
Gets a subelement name by subelement type.
void clear(bool keep_attributes=true, bool keep_memory=false)
Removes all the elements and attributes of this mesh.
const MeshSubElementsStore & get_subelements_by_index(index_t i) const
Gets a MeshSubElementsStore by index.
virtual ~Mesh()
Mesh destructor.
std::string get_attributes() const
Gets the list of all attributes.
static bool parse_attribute_name(const std::string &full_attribute_name, MeshElementsFlags &where, std::string &attribute_name, index_t &component)
Extracts localisation, name and optional component from an attribute name.
void display_attributes(const std::string &tag, const std::string &subelement_name, const MeshSubElementsStore &subelements) const
Displays the list of attributes to the Logger.
const MeshSubElementsStore & get_subelements_by_type(MeshElementsFlags what) const
Gets a MeshSubElementsStore by subelements type.
MeshSubElementsStore & get_subelements_by_type(MeshElementsFlags what)
Gets a MeshSubElementsStore by subelements type.
std::string get_vector_attributes(index_t max_dim=0) const
Gets the list of all vector attributes.
std::string get_scalar_attributes() const
Gets the list of all scalar attributes.
static MeshElementsFlags name_to_subelements_type(const std::string &name)
Gets a subelement type by subelement name.
void show_stats(const std::string &tag="Mesh") const
Displays number of vertices, facets and borders.
Wraps an integer for range-based for construct.
A generic range bounded by two "non-iterators".
Vector with aligned memory allocation.
T * data()
Gets a pointer to the array of elements.
index_t size() const
Gets the number of elements.
Geometric functions in 2d and 3d.
void copy(void *to, const void *from, size_t size)
Copies a memory block.
CellDescriptor * cell_type_to_cell_descriptor[GEO::MESH_NB_CELL_TYPES]
Maps a cell type to the associated cell descriptor.
Global Vorpaline namespace.
geo_index_t index_t
The type for storing and manipulating indices.
geo_coord_index_t coord_index_t
The type for storing coordinate indices, and iterating on the coordinates of a point.
C++-20 like helpers for manipulating ranges of integers.
Lookup tables that describe the combinatorics of each cell type.
index_t nb_vertices_in_facet[6]
index_t facet_vertex[6][4]
index_t edge_adjacent_facet[12][2]
index_t edge_vertex[12][2]