35 # pragma warning (disable: 4701 4127)
43 : maxit2_(maxit1_ +
Math::digits() + 10)
47 , tiny_(sqrt(numeric_limits<real>::min()))
48 , tol0_(numeric_limits<real>::epsilon())
54 , tolb_(tol0_ * tol2_)
55 , xthresh_(1000 * tol2_)
57 , _f(f <= 1 ? f : 1/f)
60 , _ep2(_e2 /
Math::sq(_f1))
71 (_f > 0 ?
Math::asinh(sqrt(_ep2)) : atan(sqrt(-_e2))) /
83 , _etol2(0.1 * tol2_ /
84 sqrt( max(real(0.001), abs(_f)) * min(real(1), 1 - _f/2) / 2 ))
100 const real c[],
int n) {
107 ar = 2 * (cosx - sinx) * (cosx + sinx),
108 y0 = n & 1 ? *--c : 0, y1 = 0;
113 y1 = ar * y0 - y1 + *--c;
114 y0 = ar * y1 - y0 + *--c;
116 return cosx * (y0 - y1);
120 unsigned caps)
const {
125 bool arcmode, real s12_a12,
127 real& lat2, real& lon2, real& azi2,
128 real& s12, real& m12,
129 real& M12, real& M21,
135 GenPosition(arcmode, s12_a12, outmask,
136 lat2, lon2, azi2, s12, m12, M12, M21, S12);
140 real lat2, real lon2,
142 real& s12, real& azi1, real& azi2,
143 real& m12, real& M12, real& M21,
152 int lonsign = lon12 >= 0 ? 1 : -1;
159 int swapp = abs(lat1) < abs(lat2) ? -1 : 1;
165 int latsign = lat1 < 0 ? 1 : -1;
180 real sbet1, cbet1, sbet2, cbet2, s12x, m12x;
188 Math::norm(sbet1, cbet1); cbet1 = max(tiny_, cbet1);
192 Math::norm(sbet2, cbet2); cbet2 = max(tiny_, cbet2);
202 if (cbet1 < -sbet1) {
204 sbet2 = sbet2 < 0 ? sbet1 : -sbet1;
206 if (abs(sbet2) == -sbet1)
211 dn1 = (_f >= 0 ? sqrt(1 + _ep2 *
Math::sq(sbet1)) :
212 sqrt(1 - _e2 *
Math::sq(cbet1)) / _f1),
213 dn2 = (_f >= 0 ? sqrt(1 + _ep2 *
Math::sq(sbet2)) :
214 sqrt(1 - _e2 *
Math::sq(cbet2)) / _f1);
221 real a12, sig12, calp1, salp1, calp2 = 0, salp2 = 0;
223 bool meridian = lat1 == -90 || slam12 == 0;
230 calp1 = clam12; salp1 = slam12;
231 calp2 = 1; salp2 = 0;
235 ssig1 = sbet1, csig1 = calp1 * cbet1,
236 ssig2 = sbet2, csig2 = calp2 * cbet2;
239 sig12 = atan2(max(real(0), csig1 * ssig2 - ssig1 * csig2),
240 csig1 * csig2 + ssig1 * ssig2);
243 Lengths(E, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2,
245 s12x, m12x, dummy, M12, M21);
254 if (sig12 < 1 || m12x >= 0) {
256 if (sig12 < 3 * tiny_)
257 sig12 = m12x = s12x = 0;
273 calp1 = calp2 = 0; salp1 = salp2 = 1;
275 sig12 = omg12 = lam12 / _f1;
276 m12x = _b * sin(sig12);
278 M12 = M21 = cos(sig12);
281 }
else if (!meridian) {
288 sig12 = InverseStart(E, sbet1, cbet1, dn1, sbet2, cbet2, dn2,
290 salp1, calp1, salp2, calp2, dnm);
294 s12x = sig12 * _b * dnm;
295 m12x =
Math::sq(dnm) * _b * sin(sig12 / dnm);
297 M12 = M21 = cos(sig12 / dnm);
299 omg12 = lam12 / (_f1 * dnm);
315 real ssig1 = 0, csig1 = 0, ssig2 = 0, csig2 = 0;
318 real salp1a = tiny_, calp1a = 1, salp1b = tiny_, calp1b = -1;
319 for (
bool tripn =
false, tripb =
false;
344 real v = Lambda12(sbet1, cbet1, dn1, sbet2, cbet2, dn2, salp1, calp1,
345 salp2, calp2, sig12, ssig1, csig1, ssig2, csig2,
346 E, omg12, numit < maxit1_, dv) - lam12;
349 if (tripb || !(abs(v) >= (tripn ? 8 : 2) * tol0_))
break;
351 if (v > 0 && (numit > maxit1_ || calp1/salp1 > calp1b/salp1b))
352 { salp1b = salp1; calp1b = calp1; }
353 else if (v < 0 && (numit > maxit1_ || calp1/salp1 < calp1a/salp1a))
354 { salp1a = salp1; calp1a = calp1; }
355 if (numit < maxit1_ && dv > 0) {
359 sdalp1 = sin(dalp1), cdalp1 = cos(dalp1),
360 nsalp1 = salp1 * cdalp1 + calp1 * sdalp1;
361 if (nsalp1 > 0 && abs(dalp1) <
Math::pi()) {
362 calp1 = calp1 * cdalp1 - salp1 * sdalp1;
368 tripn = abs(v) <= 16 * tol0_;
380 salp1 = (salp1a + salp1b)/2;
381 calp1 = (calp1a + calp1b)/2;
384 tripb = (abs(salp1a - salp1) + (calp1a - calp1) < tolb_ ||
385 abs(salp1 - salp1b) + (calp1 - calp1b) < tolb_);
389 Lengths(E, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2,
390 cbet1, cbet2, outmask, s12x, m12x, dummy, M12, M21);
404 if (outmask &
AREA) {
407 salp0 = salp1 * cbet1,
410 if (calp0 != 0 && salp0 != 0) {
413 ssig1 = sbet1, csig1 = calp1 * cbet1,
414 ssig2 = sbet2, csig2 = calp2 * cbet2,
416 eps = k2 / (2 * (1 + sqrt(1 + k2)) + k2),
418 A4 =
Math::sq(_a) * calp0 * salp0 * _e2;
424 B41 = CosSeries(ssig1, csig1, C4a, nC4_),
425 B42 = CosSeries(ssig2, csig2, C4a, nC4_);
426 S12 = A4 * (B42 - B41);
433 sbet2 - sbet1 < real(1.75)) {
438 somg12 = sin(omg12), domg12 = 1 + cos(omg12),
439 dbet1 = 1 + cbet1, dbet2 = 1 + cbet2;
440 alp12 = 2 * atan2( somg12 * ( sbet1 * dbet2 + sbet2 * dbet1 ),
441 domg12 * ( sbet1 * sbet2 + dbet1 * dbet2 ) );
445 salp12 = salp2 * calp1 - calp2 * salp1,
446 calp12 = calp2 * calp1 + salp2 * salp1;
451 if (salp12 == 0 && calp12 < 0) {
452 salp12 = tiny_ * calp1;
455 alp12 = atan2(salp12, calp12);
458 S12 *= swapp * lonsign * latsign;
471 salp1 *= swapp * lonsign; calp1 *= swapp * latsign;
472 salp2 *= swapp * lonsign; calp2 *= swapp * latsign;
487 real cbet1,
real cbet2,
unsigned outmask,
504 (sig12 + (E.
deltaE(ssig2, csig2, dn2) - E.
deltaE(ssig1, csig1, dn1)));
509 (sig12 + (E.
deltaD(ssig2, csig2, dn2) - E.
deltaD(ssig1, csig1, dn1)));
515 m12b = dn2 * (csig1 * ssig2) - dn1 * (ssig1 * csig2) -
519 real csig12 = csig1 * csig2 + ssig1 * ssig2;
520 real t = _ep2 * (cbet1 - cbet2) * (cbet1 + cbet2) / (dn1 + dn2);
521 M12 = csig12 + (t * ssig2 - csig2 * J12) * ssig1 / dn1;
522 M21 = csig12 - (t * ssig1 - csig1 * J12) * ssig2 / dn2;
535 if ( !(q == 0 && r <= 0) ) {
544 disc = S * (S + 2 * r3);
551 T3 += T3 < 0 ? -sqrt(disc) : sqrt(disc);
555 u += T + (T ? r2 / T : 0);
558 real ang = atan2(sqrt(-disc), -(S + r3));
561 u += 2 * r * cos(ang / 3);
566 uv = u < 0 ? q / (v - u) : u + v,
567 w = (uv - q) / (2 * v);
570 k = uv / (sqrt(uv +
Math::sq(w)) + w);
579 Math::real GeodesicExact::InverseStart(EllipticFunction& E,
595 sbet12 = sbet2 * cbet1 - cbet2 * sbet1,
596 cbet12 = cbet2 * cbet1 + sbet2 * sbet1;
597 #if defined(__GNUC__) && __GNUC__ == 4 && \
598 (__GNUC_MINOR__ < 6 || defined(__MINGW32__))
612 real sbet12a = sbet2 * cbet1 + cbet2 * sbet1;
614 bool shortline = cbet12 >= 0 && sbet12 <
real(0.5) &&
615 cbet2 * lam12 <
real(0.5);
621 sbetm2 /= sbetm2 +
Math::sq(cbet1 + cbet2);
622 dnm = sqrt(1 + _ep2 * sbetm2);
625 real somg12 = sin(omg12), comg12 = cos(omg12);
627 salp1 = cbet2 * somg12;
628 calp1 = comg12 >= 0 ?
629 sbet12 + cbet2 * sbet1 *
Math::sq(somg12) / (1 + comg12) :
630 sbet12a - cbet2 * sbet1 *
Math::sq(somg12) / (1 - comg12);
634 csig12 = sbet1 * sbet2 + cbet1 * cbet2 * comg12;
636 if (shortline && ssig12 < _etol2) {
638 salp2 = cbet1 * somg12;
639 calp2 = sbet12 - cbet1 * sbet2 *
640 (comg12 >= 0 ?
Math::sq(somg12) / (1 + comg12) : 1 - comg12);
643 sig12 = atan2(ssig12, csig12);
644 }
else if (abs(_n) >
real(0.1) ||
651 real y, lamscale, betscale;
660 E.Reset(-k2, -_ep2, 1 + k2, 1 + _ep2);
661 lamscale = _e2/_f1 * cbet1 * 2 * E.H();
663 betscale = lamscale * cbet1;
665 x = (lam12 -
Math::pi()) / lamscale;
666 y = sbet12a / betscale;
670 cbet12a = cbet2 * cbet1 - sbet2 * sbet1,
671 bet12a = atan2(sbet12a, cbet12a);
672 real m12b, m0, dummy;
676 sbet1, -cbet1, dn1, sbet2, cbet2, dn2,
678 x = -1 + m12b / (cbet1 * cbet2 * m0 *
Math::pi());
679 betscale = x < -
real(0.01) ? sbet12a / x :
681 lamscale = betscale / cbet1;
682 y = (lam12 -
Math::pi()) / lamscale;
685 if (y > -tol1_ && x > -1 - xthresh_) {
691 calp1 = max(
real(x > -tol1_ ? 0 : -1),
real(x));
729 real k = Astroid(x, y);
731 omg12a = lamscale * ( _f >= 0 ? -x * k/(1 + k) : -y * (1 + k)/k );
732 somg12 = sin(omg12a); comg12 = -cos(omg12a);
734 salp1 = cbet2 * somg12;
735 calp1 = sbet12a - cbet2 * sbet1 *
Math::sq(somg12) / (1 - comg12);
742 salp1 = 1; calp1 = 0;
756 bool diffp,
real& dlam12)
const
759 if (sbet1 == 0 && calp1 == 0)
766 salp0 = salp1 * cbet1,
769 real somg1, comg1, somg2, comg2, cchi1, cchi2, lam12;
772 ssig1 = sbet1; somg1 = salp0 * sbet1;
773 csig1 = comg1 = calp1 * cbet1;
775 cchi1 = _f1 * dn1 * comg1;
784 salp2 = cbet2 != cbet1 ? salp0 / cbet2 : salp1;
789 calp2 = cbet2 != cbet1 || abs(sbet2) != -sbet1 ?
792 (cbet2 - cbet1) * (cbet1 + cbet2) :
793 (sbet1 - sbet2) * (sbet1 + sbet2))) / cbet2 :
797 ssig2 = sbet2; somg2 = salp0 * sbet2;
798 csig2 = comg2 = calp2 * cbet2;
800 cchi2 = _f1 * dn2 * comg2;
806 sig12 = atan2(max(
real(0), csig1 * ssig2 - ssig1 * csig2),
807 csig1 * csig2 + ssig1 * ssig2);
810 omg12 = atan2(max(
real(0), comg1 * somg2 - somg1 * comg2),
811 comg1 * comg2 + somg1 * somg2);
813 E.Reset(-k2, -_ep2, 1 + k2, 1 + _ep2);
814 real chi12 = atan2(max(
real(0), cchi1 * somg2 - somg1 * cchi2),
815 cchi1 * cchi2 + somg1 * somg2);
817 _e2/_f1 * salp0 * E.H() / (
Math::pi() / 2) *
818 (sig12 + (E.deltaH(ssig2, csig2, dn2) - E.deltaH(ssig1, csig1, dn1)));
822 dlam12 = - 2 * _f1 * dn1 / sbet1;
825 Lengths(E, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2,
827 dummy, dlam12, dummy, dummy, dummy);
828 dlam12 *= _f1 / (calp2 * cbet2);
835 void GeodesicExact::C4f(
real eps,
real c[])
const {
840 for (
int l = 0; l < nC4_; ++l) {
841 int m = nC4_ - l - 1;
848 throw GeographicErr(
"C4 misalignment");
GeographicLib::Math::real real
static bool isfinite(T x)
Mathematical functions needed by GeographicLib.
static void sincosd(T x, T &sinx, T &cosx)
Elliptic integrals and functions.
static void norm(T &x, T &y)
#define GEOGRAPHICLIB_VOLATILE
Math::real GenInverse(real lat1, real lon1, real lat2, real lon2, unsigned outmask, real &s12, real &azi1, real &azi2, real &m12, real &M12, real &M21, real &S12) const
GeodesicExact(real a, real f)
GeodesicLineExact Line(real lat1, real lon1, real azi1, unsigned caps=ALL) const
Header for GeographicLib::GeodesicLineExact class.
static T atan2d(T y, T x)
static T polyval(int N, const T p[], T x)
Namespace for GeographicLib.
static T AngDiff(T x, T y)
Math::real GenDirect(real lat1, real lon1, real azi1, bool arcmode, real s12_a12, unsigned outmask, real &lat2, real &lon2, real &azi2, real &s12, real &m12, real &M12, real &M21, real &S12) const
Exact geodesic calculations.
Math::real deltaE(real sn, real cn, real dn) const
Header for GeographicLib::GeodesicExact class.
Exception handling for GeographicLib.
friend class GeodesicLineExact
Math::real deltaD(real sn, real cn, real dn) const
#define GEOGRAPHICLIB_PANIC
static const GeodesicExact & WGS84()