
Jpylyzer User Manual

2

Contents

1 Introduction 7
1.1 About jpylyzer . 7
1.2 Validation: scope and restrictions 7
1.3 Outline of this User Manual . 9
1.4 Funding . 9
1.5 License . 9

2 Installation and set-up 11
2.1 Obtaining the software . 11
2.2 Installation of Python script (Linux/Unix, Windows, Mac OS X) 12
2.3 Installation of Windows binaries (Windows only) 13
2.4 Installation of Debian packages (Ubuntu/Linux) 14

3 Using jpylyzer 15
3.1 Overview . 15
3.2 Command-line usage . 15
3.3 Using jpylyzer as a Python module 19

4 Structure of a JP2 file 21
4.1 Scope of this chapter . 21
4.2 General format structure . 21
4.3 General structure of a box . 23
4.4 Defined boxes in JP2 . 24

5 Output format 29
5.1 Overview . 29
5.2 toolInfo element . 31
5.3 fileInfo element . 31
5.4 statusInfo element . 31
5.5 isValidJP2 element . 32
5.6 tests element . 32
5.7 properties element . 32

6 JP2: box by box 33

3

4 CONTENTS

6.1 About the properties and tests trees 33
6.2 JPEG 2000 Signature box . 34
6.3 File Type box . 34
6.4 JP2 Header box (superbox) . 36
6.5 Image Header box (child of JP2 Header box) 41
6.6 Bits Per Component box (child of JP2 Header box) 44
6.7 Colour Specification box (child of JP2 Header box) 45
6.8 Palette box (child of JP2 Header box) 52
6.9 Component Mapping box (child of JP2 Header box) 53
6.10 Channel Definition box (child of JP2 Header box) 54
6.11 Resolution box (child of JP2 Header box, superbox) 56
6.12 Capture Resolution box (child of Resolution box) 58
6.13 Default Display Resolution box (child of Resolution box) 60
6.14 Contiguous Codestream box . 62
6.15 Intellectual Property box . 62
6.16 XML box . 62
6.17 UUID box . 63
6.18 UUID Info box (superbox) . 65
6.19 UUID List box (child of UUID Info box) 66
6.20 Data Entry URL box (child of UUID Info box) 67
6.21 Unknown box . 68
6.22 Top-level tests and properties . 69

7 Contiguous Codestream box 79
7.1 General codestream structure . 79
7.2 Limitations of codestream validation 81
7.3 Structure of reported output . 83
7.4 Contiguous Codestream box . 83
7.5 Image and tile size (SIZ) marker segment (child of Contiguous

Codestream box) . 90
7.6 Coding style default (COD) marker segment 95
7.7 Quantization default (QCD) marker segment 101
7.8 Comment (COM) marker segment 104
7.9 Tile part (child of Contiguous Codestream box) 106
7.10 Start of tile part (SOT) marker segment (child of tile part) . . . 108
7.11 Coding style component (COC) marker segment 110
7.12 Region-of-interest (RGN) marker segment 110
7.13 Quantization component (QCC) marker segment 111
7.14 Progression order change (POC) marker segment 111
7.15 Packet length, main header (PLM) marker segment 112
7.16 Packed packet headers, main header (PPM) marker segment . . . 112
7.17 Tile-part lengths (TLM) marker segment 113
7.18 Component registration (CRG) marker segment 113
7.19 Packet length, tile-part header (PLT) marker segment 114
7.20 Packed packet headers, tile-part header (PPT) marker segment . 115

CONTENTS 5

8 References 117

6 CONTENTS

Chapter 1

Introduction

1.1 About jpylyzer

This User Manual documents jpylyzer, a validator and feature extractor for JP2
images. JP2 is the still image format that is defined by JPEG 2000 Part 1
(ISO/IEC 15444-1). Jpylyzer was specifically created to answer the following
questions that you might have about any JP2 file:

1. Is this really a JP2 and does it really conform to the format’s specifications
(validation)?

2. What are the technical characteristics of this image (feature extraction)?

1.2 Validation: scope and restrictions

Since the word ‘validation’ means different things to different people, a few
words about the overall scope of jpylyzer. First of all, it is important to stress
that jpylyzer is not a ‘one stop solution’ that will tell you that an image is
100% perfect. What jpylyzer does is this: based on the JP2 format specification
(ISO/IEC 15444-1), it parses a file. It then subjects the file’s contents to a large
number of tests, each of which is based on the requirements and restrictions
that are defined by the standard. If a file fails one or more tests, this implies
that it does not conform to the standard, and is no valid JP2. Importantly,
this presumes that jpylyzer’s tests accurately reflect the format specification,
without producing false positives.

7

8 CHAPTER 1. INTRODUCTION

1.2.1 ‘Valid’ means ‘probably valid’

If a file passes all tests, this is an indication that it is probably valid JP2. This
(intentionally) implies a certain degree of remaining uncertainty, which is related
to the following.

First of all, jpylyzer (or any other format validator for that matter) ‘validates’
a file by trying to prove that it does not conform to the standard. It cannot
prove that that a file does conform to the standard.

Related to this, even though jpylyzer’s validation process is very comprehensive,
it is not complete. For instance, the validation of JPEG 2000 codestreams at
this moment is still somewhat limited. Section 7.2 discusses these limitations
in detail. Some of these limitations (e.g. optional codestream segment markers
that are only minimally supported at this stage) may be taken away in upcoming
versions of the tool.

1.2.2 No check on compressed bitstreams

One important limitation that most certainly will not be addressed in any up-
coming versions is that jpylyzer does not analyse the data in the compressed
bitstream segments. Doing so would involve decoding the whole image, and
this is completely out of jpylyzer’s scope. As a result, it is possible that a JP2
that passes each of jpylyzer’s tests will nevertheless fail to render correctly in a
viewer application.

1.2.3 Recommendations for use in quality assurance work-
flows

Because of the foregoing, a thorough JP2 quality assurance workflow should
not rely on jpylyzer (or any other format validator) alone, but it should include
other tests as well. Some obvious examples are:

• A rendering test that checks if a file renders at all

• Format migration workflows (e.g. TIFF to JP2) should ideally also include
some comparison between source and destination images (e.g. a pixel-wise
comparison)

Conversely, an image that successfully passes a rendering test or pixel-wise com-
parison may still contain problematic features (e.g. incorrect colour space in-
formation), so validation, rendering tests and pixel-wise comparisons are really
complementary to each other.

1.3. OUTLINE OF THIS USER MANUAL 9

1.2.4 Note on ICC profile support

The support of ICC profiles in JP2 was recently extended through an amend-
ment to the standard. These changes are taken into account by jpylyzer, which
is in line with the most recent version of the (updated) standard.

1.3 Outline of this User Manual

Chapter 2 describes the installation process of jpylyzer for Windows and Unix-
based systems. Chapter 3 explains the usage of jpylyzer as a command-line tool,
or as an importable Python module. Chapter 4 gives a brief overview of the
structure of JP2 and its ‘box’ structure. Jpylyzer’s output format is explained
in chapter 5. The final chapters give a detailed description of the tests that
jpylyzer performs for validation, and its reported properties. Chapter 6 does
this for all ‘boxes’, except for the ‘Contiguous Codestream’ box, which is given
a Chapter (7) of its own.

1.4 Funding

The development of jpylyzer was funded by the EU FP 7 project SCAPE (SCAl-
abable Preservation Environments). More information about this project can
be found here:

http://www.scape-project.eu/

1.5 License

Jpylyzer is free software: you can redistribute it and/or modify it under the
terms of the GNU Lesser General Public License as published by the Free Soft-
ware Foundation, either version 3 of the License, or (at your option) any later
version. This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details. You should have received
a copy of the GNU Lesser General Public License along with this program. If
not, see:

http://www.gnu.org/licenses/

On Debian systems, the complete text of the GNU Lesser General Public License
version 3 can be found in:

/usr/share/common-licenses/LGPL-3

http://www.itu.int/rec/T-REC-T.800-201303-P!Amd6/en
http://www.itu.int/rec/T-REC-T.800-201303-P!Amd6/en
http://www.scape-project.eu/
http://www.gnu.org/licenses/

10 CHAPTER 1. INTRODUCTION

Chapter 2

Installation and set-up

2.1 Obtaining the software

To obtain the latest version of the software please use the download links at the
jpylyzer homepage:

http://jpylyzer.openpreservation.org/

You have three options:

1. Use the Python source code. This allows you to run the software as a
Python script on most popular platforms (Windows, Linux, Mac, etc.).
However, this requires that you have a recent version of the Python inter-
preter available on your system.

2. Alternatively, for Windows users there is also a set of stand-alone binaries1.
These allow you to run jpylyzer as an executable Windows application,
without any need for installing Python. This option is particularly useful
for Windows users who cannot (or don’t want to) install software on their
system.

3. For Linux users Debian packages are available. These allow you to run
jpylyzer without any need for installing Python.

These options are described in the following sections.

1The jpylyzer binaries were created using the PyInstaller package: http://www.pyinstaller.
org/

11

http://jpylyzer.openpreservation.org/
http://www.pyinstaller.org/
http://www.pyinstaller.org/

12 CHAPTER 2. INSTALLATION AND SET-UP

2.2 Installation of Python script (Linux/Unix,
Windows, Mac OS X)

First, download the source files using one of the ‘Source Code Downloads’ links
on the OPF jpylyzer page.

Then unzip the contents of the ZIP file to an empty directory. If you are working
on a Linux/Unix based system you may need to make the scripts executable,
and convert any line breaks to Unix-style ones. To do this, use the following
commands:

chmod 755 *.py
dos2unix *.py

In order to run the script you will need either Python 2.7, or Python 3.2 (or
more recent)2. Python can be downloaded from:

http://python.org/

2.2.1 Testing the installation

To test your installation, open a console window (or command prompt) and
type:

%jpylyzerPath%/jpylyzer.py -h

In the above command, replace %jpylyzerPath% with the full path to the jpylyzer
installation directory (i.e. the directory that contains ‘jpylyzer.py’ and its associ-
ated files). For example, if you extracted the files to directory ‘/home/jpylyzer’,
the command would become:

/home/jpylyzer/jpylyzer.py -h

Executing this command should result in the following screen output:

usage: jpylyzer.py [-h] [--verbose] [--recurse] [--wrapper] [--nullxml]
[--nopretty] [--version] jp2In [jp2In ...]

2.2.2 Troubleshooting

If the above test didn’t run successfully, first verify the following possible causes:

• On Windows: check if files with a .py extension are associated with the
Python interpreter. If you have multiple versions of Python on your sys-
tem, make sure that the association does not link to a Python version
that is incompatible with jpylyzer (e.g. Python 2.6 or older, or Python
3.0/3.1).

2Note that jpylyzer will not work under Python versions 3.0-3.1!

http://python.org/

2.3. INSTALLATION OF WINDOWS BINARIES (WINDOWS ONLY) 13

• On Unix/Linux: by default, jpylyzer uses the command interpreter that
is defined by the ‘python’ environment variable. If this is linked to some
(very) old version of Python, things may not work as expected. If you run
into problems because of this, update the command interpreter references
in jpylyzer.py, i.e. change:

into:

2.3 Installation of Windows binaries (Windows
only)

Download the binary using the link on the jpylyzer homepage. Unzip the con-
tents of this file to an empty folder on your PC. Jpylyzer should now be ready
for use.

2.3.1 Testing the installation

To test your installation, open a Command Prompt (‘DOS prompt’) and type:

%jpylyzerPath%\jpylyzer -h

In the above command, replace %jpylyzerPath% with the full path to the
jpylyzer installation directory (i.e. the directory that contains ‘jpylyzer.exe’
and its associated files). For example, if you extracted the files to directory
c:\tools\jpylyzer, the command would become:

c:\tools\jpylyzer\jpylyzer -h

Executing this command should result in the following screen output:

usage: jpylyzer.py [-h] [--verbose] [--recurse] [--wrapper] [--nullxml]
[--nopretty] [--version] jp2In [jp2In ...]

2.3.2 Running jpylyzer without typing the full path

Optionally, you may also want to add the full path of the jpylyzer installation
directory to the Windows ’Path’ environment variable. Doing so allows you to
run jpylyzer from any directory on your PC without having to type the full
path. In Windows 7 you can do this by selecting ‘settings’ from the ‘Start’
menu; then go to ‘control panel’/’system’ and go to the ‘advanced’ tab. Click
on the ‘environment variables’ button. Finally, locate the ‘Path’ variable in the
‘system variables’ window, click on ‘Edit’ and add the full jpylyzer path (this
requires local Administrator privileges). The settings take effect on any newly
opened command prompt.

14 CHAPTER 2. INSTALLATION AND SET-UP

2.4 Installation of Debian packages (Ubuntu/Linux)

For a number of Linux architectures Debian packages of jpylyzer exist. To install,
simply download the .deb file, double-click on it and select Install Package.
Alternatively you can also do this in the command terminal by typing:

sudo dpkg -i jpylyzer_1.13.0_i386.deb

In both cases you need to have administrative privileges.

Chapter 3

Using jpylyzer

3.1 Overview

This chapter describes the general use of jpylyzer. The first sections cover the
use of jpylyzer as a command-line tool and as an importable Python module.

3.2 Command-line usage

This section explains jpylyzer’s general command-line interface. For the sake
of brevity, all command-line examples assume the use of the Python script;
moreover, full paths are omitted. This means that, depending on your system
and settings, you may have to substitute each occurrence of ‘jpylyzer.py’ with
its full path, the corresponding Windows binary, or a combination of both. The
following examples illustrate this:

This User Manual jpylyzer.py
Substitution example Linux /home/jpylyzer/jpylyzer.py
Substitution example Windows binaries c:\tools\jpylyzer\jpylyzer

Furthermore, command line arguments that are given between square brackets
(example: [-h]) are optional.

3.2.1 Synopsis

Jpylyzer can be invoked using the following command-line arguments:

15

16 CHAPTER 3. USING JPYLYZER

usage: jpylyzer.py [-h] [--verbose] [--recurse] [--wrapper] [--nullxml]
[--nopretty] [--version] jp2In [jp2In ...]

With:

jp2In input JP2 image(s)
[-h, --help] show help message and exit
[--verbose] report test results in verbose format
[--recurse, -r] when analysing a directory, recurse into subdirectories (im-

plies –wrapper)
[--wrapper, -w] wraps the output for individual image(s) in ‘results’ XML

element
[--nullxml] extract null-terminated XML content from XML and UUID

boxes(doesn’t affect validation)
[--nopretty] suppress pretty-printing of XML output
[-v, --version] show program’s version number and exit

Note that the input can either be a single image, a space-separated sequence of
images, a pathname expression that includes multiple images, or any combina-
tion of the above. For example, the following command will process one single
image:

jpylyzer.py rubbish.jp2

The next example shows how to process all files with a ‘jp2’ extension in the
current directory:

jpylyzer.py *.jp2

Note that on Unix/Linux based systems pathname expressions may not work
properly unless you wrap them in quotation marks:

jpylyzer.py "*.jp2"

3.2.2 Output redirection

All output (except warning and system error messages) is directed to the stan-
dard output device (stdout). By default this is the console screen. Use your
platform’s standard output redirection operators to redirect output to a file.
The most common situation will be to redirect the output of one invocation of
jpylyzer to an XML file, which can be done with the ‘>’ operator (both under
Windows and Linux):

jpylyzer.py jp2In > outputFile

E.g. the following command will run jpylyzer on image ‘rubbish.jp2’ and redi-
rects the output to file ‘rubbish.xml’:

jpylyzer.py rubbish.jp2 > rubbish.xml

The format of the XML output is described in Chapter 5.

3.2. COMMAND-LINE USAGE 17

3.2.3 ‘recurse’ option

If the –recurse option is used, jpylyzer will recursively traverse all subdirectories
of a filepath expression. E.g:

jpylyzer.py /home/myJP2s/*.jp2 > rubbish.xml

In this case jpylyzer analyses all files that have a .jp2 extension in directory
/home/myJP2s and all its subdirectories.

3.2.4 Creating valid XML with multiple images

By default, jpylyzer creates a separate XML tree for each analysed image, with-
out any overarching hierarchy. If you use a pathname expression to process
multiple images and redirect the output to a file, the resulting file will not be
a well-formed XML document. An example:

jpylyzer.py rubbish.jp2 garbage.jp2 > rubbish.xml

In this case, the output for these 2 images is redirected to ‘rubbish.xml’, but
the file will be a succession of two XML trees, which by itself is not well-formed
XML. Use the –wrapper option if you want to create valid XML instead:

jpylyzer.py --wrapper rubbish.jp2 garbage.jp2 > rubbish.xml

In the above case the XML trees of the individual images are wrapped inside a
‘results’ element. When the –recurse option is used, jpylyzer will automatically
wrap the output in a ‘results’ element, so there’s no need to specify –wrapper
in that case.

3.2.5 ‘nullxml’ option

The nullxml option was added to enable extraction of XML content that is
terminated by a null-byte. By default jpylyzer doesn’t report the XML in that
case, because it throws an exception in the XML parser. Apparently some old
versions of the Kakadu demo applications would erroneously add a null-byte to
embedded XML, so this option can be used to force extraction for images that
are affected by this.

3.2.6 User warnings

Under the following conditions jpylyzer will print a user warning to the standard
error device (typically the console screen):

18 CHAPTER 3. USING JPYLYZER

3.2.6.1 No images to check

If there are no input images to check (typically because the value of jp2In refers
to a non-existent file), the following warning message is shown:

User warning: no images to check!

3.2.6.2 Unsupported box

In some cases you will see the following warning message:

User warning: ignoring 'boxName' (validator function not yet implemented)

The reason for this: a JP2 file is made up of units that are called ‘boxes’. This
is explained in more detail in Chapter 4. Each ‘box’ has its own dedicated
validator function. At this stage validator functions are still missing for a small
number of (optional) boxes. Jpylyzer will display the above warning message
if it encounters a (yet) unsupported box. Any unsupported boxes are simply
ignored, and the remainder of the file will be analyzed (and validated) normally.

3.2.6.3 Error while processing a file

In rare cases you may come across one of the following messages:

User warning: memory error (file size too large)

Memory errors may occur for (very) large images. If you get this warning, try
using a machine with more RAM. Also, a machine’s chip architecture and the
operating system may put constraints on the amount of memory that can be
allocated.

The following warning indicates an input error:

User warning: I/O error (cannot open file)

Finally, the following messages most likely indicate a jpylyzer bug:

User warning:runtime error (please report to developers)

User warning: unknown error (please report to developers)

If you ever run into either of these two errors, please get in touch with the
jpylyzer developers. The easiest way to do this is to create a new issue at:

https://github.com/openpreserve/jpylyzer/issues

3.2.6.4 Unknown box

Occasionally, you may see this warning message:

https://github.com/openpreserve/jpylyzer/issues

3.3. USING JPYLYZER AS A PYTHON MODULE 19

User warning: ignoring unknown box

This happens if jpylyzer encounters a box that is not defined by JPEG 2000
Part 1. It should be noted that, to a large extent, JPEG 2000 Part 1 permits
the presence of boxes that are defined outside the standard. Again, jpylyzer will
simply ignore these and process all other boxes normally.

3.3 Using jpylyzer as a Python module

Instead of using jpylyzer from the command-line, you can also import it as a
module in your own Python programs. To do so, put all the jpylyzer source files
in the same directory as your own code. Then import jpylyzer into your code
by adding:

import jpylyzer

Subsequently you can call any function that is defined in jpylyzer.py. In practice
you will most likely only need the checkOneFile function, which can be called
in the following way:

jpylyzer.checkOneFile(file)

Here, file is the path to a file object. The function returns an element object
that can either be used directly, or converted to XML using the ElementTree
module1. The structure of the element object follows the XML output that
described in Chapter 5.

Alternatively, you may only want to import the checkOneFile function, in which
case the import statement becomes:

from jpylyzer import checkOneFile

This will allow you to call the function as follows:

checkOneFile(file)

1Note that jpylyzer versions 1.8 and earlier returned a formatted XML string instead of an
element object!

20 CHAPTER 3. USING JPYLYZER

Chapter 4

Structure of a JP2 file

4.1 Scope of this chapter

This chapter gives a brief overview of the JP2 file format. A basic understanding
of the general structure of JP2 is helpful for appreciating how jpylyzer performs
its validation. It will also make it easier to understand jpylyzer‘s extracted
properties, as these are reported as a hierarchical tree that corresponds to the
internal structure of JP2.

For an exhaustive description of every detail of the format you are advised to
consult Annex I (‘JP2 file format syntax’) and Annex A (‘Codestream syntax’)
of ISO/IEC 15444-1.

4.2 General format structure

At the highest level, a JP2 file is made up of a collection of boxes. A box
can be thought of as the fundamental building block of the format. Some
boxes (‘superboxes’) are containers for other boxes. The Figure below gives an
overview of the top-level boxes in a JP2 file.

A number of things here are noteworthy to point out:

• Some of these boxes are required, whereas others (indicated with dashed
lines in the Figure) are optional.

• The order in which the boxes appear in the file is subject to some con-
straints (e.g. the first box in a JP2 must always be a ‘Signature’ box,
followed by a ‘File Type’ box).

21

22 CHAPTER 4. STRUCTURE OF A JP2 FILE

Figure 4.1: Top-level overview of a JP2 file. Boxes with dashed borders are
optional.

4.3. GENERAL STRUCTURE OF A BOX 23

• Some boxes may have multiple instances (e.g. ‘Contiguous Codestream’
box), whereas others must be unique (e.g. ‘JP2 Header’ box).

More specific details can be found in the standard. The important thing here
is that requirements like the above are something that should be verified by
a validator, and this is exactly what jpylyzer does at the highest level of its
validation procedure.

4.3 General structure of a box

All boxes are defined by a generic binary structure, which is illustrated by the
following Figure:

Figure 4.2: General structure of a box.

Most boxes are made up of the following three components:

1. A fixed-length ‘box length’ field that indicates the total size of the box (in
bytes).

2. A fixed-length ‘box type’ field which specifies the type of information that
can be found in this box

3. The box contents, which contains the actual information within the box.
Its internal format depends on the box type. The box contents of a ‘su-
perbox’ will contain its child boxes (which can be parsed recursively).

In some cases a box will also contain an ‘extended box length field’. This field
is needed if the size of a box exceeds 232-1 bytes, which is the maximum value
that can be stored in the 4-byte ‘box length’ field.

24 CHAPTER 4. STRUCTURE OF A JP2 FILE

4.4 Defined boxes in JP2

The following Table (taken from Table I.2 in ISO/IEC 15444-1, with minor
modifications) lists all boxes that are defined in the standard. Addition signs in
the ‘box name’ column indicate boxes that are children of a ‘superbox’.

Box name Superbox Required? Purpose
JPEG 2000
Signature
box

No Required Identifies
the file as
being part
of the
JPEG 2000
family of
files.

File Type
box

No Required Specifies
file type,
version and
compatibil-
ity
informa-
tion,
including
specifying
if this file is
a
conforming
JP2 file or
if it can be
read by a
conforming
JP2 reader.

JP2 Header
box

Yes Required Contains a
series of
boxes that
contain
header-type
information
about the
file.

4.4. DEFINED BOXES IN JP2 25

Box name Superbox Required? Purpose
+ Image
Header box

No Required Specifies
the size of
the image
and other
related
fields.

+ Bits Per
Component
box

No Optional Specifies
the bit
depth of
the
components
in the file
in cases
where the
bit depth is
not
constant
across all
compo-
nents.

+ Colour
Specifica-
tion box

No Required Specifies
the
colourspace
of the
image.

+ Palette
box

No Optional Specifies
the palette
which maps
a single
component
in index
space to a
multiple-
component
image.

26 CHAPTER 4. STRUCTURE OF A JP2 FILE

Box name Superbox Required? Purpose
+
Component
Mapping
box

No Optional Specifies
the
mapping
between a
palette and
codestream
compo-
nents.

+ Channel
Definition
box

No Optional Specifies
the type
and
ordering of
the
components
within the
codestream,
as well as
those
created by
the
application
of a palette.

+
Resolution
box

Yes Optional Contains
the grid
resolution.

++ Capture
Resolution
box

No Optional Specifies
the grid
resolution
at which
the image
was
captured.

++ Default
Display
Resolution
box

No Optional Specifies
the default
grid
resolution
at which
the image
should be
displayed.

4.4. DEFINED BOXES IN JP2 27

Box name Superbox Required? Purpose
Contiguous
Codestream
box

No Required Contains
the
codestream.

Intellectual
Property
box

No Optional Contains
intellectual
property
information
about the
image.

XML box No Optional Provides a
tool by
which
vendors can
add XML
formatted
information
to a JP2
file.

UUID box No Optional Provides a
tool by
which
vendors can
add
additional
information
to a file
without
risking
conflict
with other
vendors.

UUID Info
box

Yes Optional Provides a
tool by
which a
vendor may
provide
access to
additional
information
associated
with a
UUID.

28 CHAPTER 4. STRUCTURE OF A JP2 FILE

Box name Superbox Required? Purpose
+ UUID
List box

No Optional Specifies a
list of
UUIDs.

+ URL box No Optional Specifies a
URL.

A JP2 file may contain boxes that are not defined by the standard. Such boxes
are simply skipped and ignored by conforming reader applications.

Chapter 5

Output format

This chapter explains jpylyzer’s output format.

5.1 Overview

Jpylyzer generates its output in XML format, which is defined by the schema
that can be found here. The following Figure shows the output structure:

The root element (jpylyzer) contains 5 child elements:

1. toolInfo: information about jpylyzer

2. fileInfo: general information about the analysed file

3. statusInfo: information about the status of jpylyzer’s validation attempt

4. isValidJP2: outcome of the validation

5. tests: outcome of the individual tests that are part of the validation process
(organised by box)

6. properties: image properties (organised by box)

If jpylyzer is executed with the –wrapper option, the root element is results,
which contains one or more jpylyzer elements which otherwise follow the above
structure. From version 1.12 onward, the XML output is pretty-printed. You
can use the –nopretty switch to disable pretty-printing (this produces smaller
files and may give a slightly better performance).

29

http://jpylyzer.openpreservation.org/jpylyzer-v-1-0.xsd
http://jpylyzer.openpreservation.org/jpylyzer-v-1-0.xsd

30 CHAPTER 5. OUTPUT FORMAT

Figure 5.1: Jpylyzer’s XML output structure. ‘box’ elements under ‘tests’ and
‘properties’ contain further sub-elements.

5.2. TOOLINFO ELEMENT 31

5.2 toolInfo element

This element holds information about jpylyzer. Currently it contains the follow-
ing sub-elements:

• toolName: name of the analysis tool (i.e. jpylyzer.py or jpylyzer, depending
on whether the Python script or the Windows binaries were used)

• toolVersion: version of jpylyzer (jpylyzer uses a date versioning scheme)

5.3 fileInfo element

This element holds general information about the analysed file. Currently it
contains the following sub-elements:

• filename: name of the analysed file without its path (e.g. “rubbish.jp2”)

• filePath: name of the analysed file, including its full absolute path (e.g.
“d:\data\images\rubbish.jp2”)

• fileSizeInBytes: file size in bytes

• fileLastModified: last modified date and time

5.4 statusInfo element

This element holds general information about about the status of jpylyzer’s
attempt at validating a file. It tells you whether the validation process could
be completed without any internal jpylyzer errors. It contains the following
sub-elements:

• success: a Boolean flag that indicates whether the validation attempt
completed normally (“True”) or not (“False”). A value of “False” indicates
an internal error that prevented jpylyzer from validating the file.

• failureMessage: if the validation attempt failed (value of success equals
“False”), this field gives further details about the reason of the failure.
Examples are:

memory error (file size too large)

runtime error (please report to developers)

unknown error (please report to developers)

32 CHAPTER 5. OUTPUT FORMAT

5.5 isValidJP2 element

This element contains the results of the validation. If a file passed all the tests
(i.e. all tests returned “True”, see section 5.5) it is most likely valid JP2, and
the value of isValidJP2 will be “True”. Its value is “False” otherwise.

5.6 tests element

This element is reserved to hold the outcomes of all the individual tests that
jpylyzer performs to assess whether a file is valid JP2. The results are organised
in a hierarchical tree that corresponds to JP2’s box structure. Each individual
test can have two values:

• “True” if a file passed the test.

• “False” if a file failed the test.

If a file passed all tests, this is an indication that it is most likely valid JP2.
In that case, the isValidJP2 element (section 5.4) has a value of “True” (and
“False” in all other cases). These tests are all explained in chapters 6 and 7.

5.6.1 Default and verbose reporting of test results

By default, jpylyzer only reports any tests that failed (i.e. returned “False”),
including the corresponding part of the box structure. For a valid JP2 the tests
element will be empty. If the –verbose flag is used, the results of all tests are
included (including those that returned “True”)1.

5.7 properties element

This element contains the extracted image properties, which are organised in a
hierarchical tree that corresponds to JP2’s box structure. See chapters 6 and 7
for a description of the reported properties.

1Note that jpylyzer versions 1.4 and earlier used the verbose output format by default.
This behaviour has changed in version 1.5 onwards, as the lengthy output turned out to be
slightly confusing to some users.

Chapter 6

JP2: box by box

The following two chapters provide a detailed explanation of jpylyzer’s function-
ality and its output. In particular, the following two aspects are addressed:

1. The reported properties

2. The tests that jpylyzer performs to establish the validity of a file.

6.1 About the properties and tests trees

The ‘properties’ element in jpylyzer’s output holds a hierarchical tree structure
that contains all extracted properties. The ‘tests’ tree follows the same structure.
The hierarchy reflects JP2’s box structure (explained in Chapter 4): each box is
represented by a corresponding output element that contains the corresponding
property entries. If a box is a superbox, the output element will contain child
elements for each child box. For some boxes, the output contains further sub-
elements. This applies in particular to the Contiguous Codestream box, since
its contents are more complex than any of the other boxes. Also, if a Colour
Specification box contains an embedded ICC profile, the properties of the ICC
profile are stored in a separate sub-element. In addition to this, one ‘property’
that is reported by jpylyzer (the compression ratio) is not actually extracted
from any particular box. Instead, it is calculated from the file size and some
properties from the Header boxes. As a result, it is reported separately in the
root of the properties tree.

6.1.1 Naming of properties

The naming of the reported properties largely follows the standard (ISO/IEC
15444-1). Some minor differences follow from the fact that the standard does

33

34 CHAPTER 6. JP2: BOX BY BOX

have any consistent use of text case, whereas jpylyzer uses lower camel case. In
addition, some parameters in the standard are compound units that aggregate a
number of Boolean ‘switches’, where no names are provided for each individual
switch. An example of this is the Scod (coding style) parameter in the code-
stream header, which contains three switches that define the use of precincts,
start-of-packet markers and end-of-packet markers. For cases like these jpylyzer
uses its own (largely self-descriptive) names (which are all documented in these
chapters).

6.2 JPEG 2000 Signature box

This box contains information that allows identification of the file as being part
of the JPEG 2000 family of file formats.

6.2.1 Element name

signatureBox

6.2.2 Reported properties

None (box only holds JPEG 2000 signature, which includes non-printable char-
acters)

6.2.3 Tests

Test name True if
boxLengthIsValid Size of box contents equals 4 bytes
signatureIsValid Signature equals 0x0d0a870a

6.3 File Type box

This box specifies file type, version and compatibility information, including
specifying if this file is a conforming JP2 file or if it can be read by a conforming
JP2 reader.

6.3.1 Element name

fileTypeBox

6.3. FILE TYPE BOX 35

6.3.2 Reported properties

Property Description
br Brand
minV Minor version
cL* Compatibility field (repeatable)

6.3.3 Tests

Test
name True if
boxLengthIsValid(Size of

box –
8) /4 is
a whole
number
(inte-
ger)

brandIsValidbr
equals
0x6a703220
(“jp2”)

minorVersionIsValidminV
equals
0

compatibilityListIsValidSequence
of
compat-
ibility
(cL)
fields
in-
cludes
one
entry
that
equals
0x6a703220
(“jp2”)

36 CHAPTER 6. JP2: BOX BY BOX

6.4 JP2 Header box (superbox)

This box is a superbox that holds a series of boxes that contain header-type
information about the file.

6.4.1 Element name

jp2HeaderBox

6.4.2 Reported properties

Since this is a superbox, it contains a number of child boxes. These are repre-
sented as child elements in the properties tree:

Child element
Description

imageHeaderBox
(section 6.5)

Properties
from Image
Header box
(required)

bitsPerComponentBox
(section 6.6)

Properties
from Bits
Per
Component
box
(optional)

ColourSpecificationBox
(section 6.7)

Properties
from Colour
Specifica-
tion box
(required)

paletteBox
(section 6.8)

Properties
from Palette
box
(optional)

componentMappingBox
(section 6.9)

Properties
from
Component
Mapping
box
(optional)

6.4. JP2 HEADER BOX (SUPERBOX) 37

Child element
Description

channelDefinitionBox
(section 6.10)

Properties
from
Channel
Definition
box
(optional)

resolutionBox
(section 6.11)

Properties
from
Resolution
box
(optional)

6.4.3 Tests

Test
name True if
containsImageHeaderBoxBox

con-
tains
re-
quired
Image
Header
box

containsColourSpecificationBoxBox
con-
tains
re-
quired
Colour
Specifi-
cation
box

38 CHAPTER 6. JP2: BOX BY BOX

Test
name True if
containsBitsPerComponentBoxBox

con-
tains
Bits
Per
Compo-
nent
Box,
which
is re-
quired
if bPC-
Sign
and
bPCDepth
in
Image
Header
Box
equal 1
and
128,
respec-
tively
(test is
skipped
other-
wise)

firstJP2HeaderBoxIsImageHeaderBoxFirst
child
box is
Image
Header
Box

6.4. JP2 HEADER BOX (SUPERBOX) 39

Test
name True if
noMoreThanOneImageHeaderBoxBox

con-
tains
no
more
than
one
Image
Header
box

noMoreThanOneBitsPerComponentBoxBox
con-
tains
no
more
than
one
Bits
Per
Compo-
nent
box

noMoreThanOnePaletteBoxBox
con-
tains
no
more
than
one
Palette
box

noMoreThanOneComponentMappingBoxBox
con-
tains
no
more
than
one
Compo-
nent
Map-
ping
box

40 CHAPTER 6. JP2: BOX BY BOX

Test
name True if
noMoreThanOneChannelDefinitionBoxBox

con-
tains
no
more
than
one
Chan-
nel
Defini-
tion
box

noMoreThanOneResolutionBoxBox
con-
tains
no
more
than
one
Resolu-
tion
box

colourSpecificationBoxesAreContiguousIn case
of mul-
tiple
Colour
Specifi-
cation
boxes,
they
appear
contigu-
ously in
the JP2
Header
box

6.5. IMAGE HEADER BOX (CHILD OF JP2 HEADER BOX) 41

Test
name True if
paletteAndComponentMappingBoxesOnlyTogetherBox

con-
tains a
Palette
box
(only if
Compo-
nent
Map-
ping
box is
present);
box
con-
tains a
Compo-
nent
Map-
ping
box
(only if
Palette
box is
present)

6.5 Image Header box (child of JP2 Header box)

This box specifies the size of the image and other related fields.

6.5.1 Element name

imageHeaderBox

6.5.2 Reported properties

42 CHAPTER 6. JP2: BOX BY BOX

Property
Description

height Image
height in
pixels

width Image width
in pixels

nC Number of
image
components

bPCSign Indicates
whether
image
components
are signed
or unsigned

bPCDepth Number of
bits per
component

c Compression
type

unkC Colourspace
Unknown
field (“yes”
if
colourspace
of image
data is
unknown;
“no”
otherwise)

iPR Intellectual
Property
field (“yes”
if image
contains
intellectual
property
rights
information;
“no”
otherwise)

6.5.3 Tests

6.5. IMAGE HEADER BOX (CHILD OF JP2 HEADER BOX) 43

Test
name True if
boxLengthIsValidSize of

box
con-
tents
equals
14
bytes

heightIsValidheight
is
within
range
[1, 232 -
1]

widthIsValidwidth is
within
range
[1, 232 -
1]

nCIsValid nC is
within
range
[1,
16384]

bPCIsValid bPCDepth
is
within
range
[1,38]
OR
bPC-
Sign
equals
255 (in
the
latter
case
the bit
depth
is vari-
able)

44 CHAPTER 6. JP2: BOX BY BOX

Test
name True if
cIsValid c

equals 7
(“jpeg2000”)

unkCIsValid unkC
equals
0
(“no”)
or 1
(“yes”)

iPRIsValid iPR
equals
0
(“no”)
or 1
(“yes”)

6.6 Bits Per Component box (child of JP2
Header box)

This (optional) box specifies the bit depth of the components in the file in cases
where the bit depth is not constant across all components.

6.6.1 Element name

bitsPerComponentBox

6.6.2 Reported properties

6.7. COLOUR SPECIFICATION BOX (CHILD OF JP2 HEADER BOX) 45

Property
Description

bPCSign* Indicates
whether
image
component
is signed or
unsigned
(repeated for
each
component)

bPCDepth*Number of
bits for this
component
(repeated for
each
component)

6.6.3 Tests

Test name True if
bPCIsValid* bPCDepth is within range [1,38] (repeated for each component)

6.7 Colour Specification box (child of JP2
Header box)

This box specifies the colourspace of the image.

6.7.1 Element name

colourSpecificationBox

6.7.2 Reported properties

46 CHAPTER 6. JP2: BOX BY BOX

Property
Description

meth Specification
method.
Indicates
whether
colourspace
of this
image is
defined as
an
enumerated
colourspace
or using a
(restricted)
ICC profile.

prec Precedence
approx Colourspace

approxima-
tion

enumCS
(if meth
equals
“Enumer-
ated”)

Enumerated
colourspace
(as
descriptive
text string)

icc (if
meth
equals
“Re-
stricted
ICC” or
“Any
ICC”1)

Properties
of ICC
profile as
child
element (see
below)

1The “Any ICC” method is defined in ISO/IEC 15444-2 (the JPX format), and is not
allowed in JP2. However, jpylyzer offers limited support for JPX here by also reporting the
properties of ICC profiles that were embedded using this method. Note that any file that uses
this method will fail the “methIsValid” test (and thereby the validation).

6.7. COLOUR SPECIFICATION BOX (CHILD OF JP2 HEADER BOX) 47

6.7.3 Reported properties of ICC profiles

If the colour specification box contains an embedded ICC profile, jpylyzer will
also report the following properties (which are all grouped in an “icc” sub-
element in the properties tree). An exhaustive explanation of these properties
is given in the ICC specification (ISO 15076-1 / ICC.1:2004-10). Note that
jpylyzer does not validate embedded ICC profiles (even though it does check if
a specific ICC profile is allowed in JP2)!

Property
Description

profileSize Size of ICC
profile in
bytes

preferredCMMTypePreferred
CMM type

profileVersionProfile
version.
Format:
“majorRevi-
sion.minorRevision.bugFixRevision”

profileClass Profile/device
class

colourSpaceColourspace

profileConnectionSpaceProfile
connection
space

dateTimeStringDate / time
string.
Format:
“YYYY/MM/DD,
h:m:s”

profileSignatureProfile
signature

primaryPlatformPrimary
platform

48 CHAPTER 6. JP2: BOX BY BOX

Property
Description

embeddedProfileFlag that
indicates
whether
profile is
embedded
in file
(“yes”/”no”)

profileCannotBeUsedIndependentlyFlag that
indicates
whether
profile
cannot (!)
be used in-
dependently
from the
embedded
colour data
(“yes”/”no”)

deviceManufacturerIdentifies a
device man-
ufacturer

deviceModelIdentifies a
device
model

transparencyIndicates
whether
device
medium is
reflective or
transparent

glossiness Indicates
whether
device
medium is
glossy or
matte

6.7. COLOUR SPECIFICATION BOX (CHILD OF JP2 HEADER BOX) 49

Property
Description

polarity Indicates
whether
device
medium is
positive or
negative

colour Indicates
whether
device
medium is
colour or
black and
white

renderingIntentRendering
intent

connectionSpaceIlluminantXProfile
connection
space
illuminant X

connectionSpaceIlluminantYProfile
connection
space
illuminant Y

connectionSpaceIlluminantZProfile
connection
space
illuminant Z

profileCreatorIdentifies
creator of
profile

profileID Profile
checksum
(as
hexadecimal
string)

tag* Signature of
profile tag
(repeated for
each tag in
the profile)

50 CHAPTER 6. JP2: BOX BY BOX

Property
Description

description Profile
description
(extracted
from ‘desc’
tag)

6.7.4 Tests

Test
name True if
methIsValid meth

equals 1
(enu-
mer-
ated
colourspace)
or 2 (re-
stricted
ICC
profile)

precIsValid prec
equals
0

approxIsValidapprox
equals
0

enumCSIsValid
(if meth
equals
“Enumer-
ated”)

enumCS
equals
16
(“sRGB”),
17
(“greyscale”)
or 18
(“sYCC”)

6.7. COLOUR SPECIFICATION BOX (CHILD OF JP2 HEADER BOX) 51

Test
name True if
iccSizeIsValid
(if meth
equals
“Re-
stricted
ICC”)

Actual
size of
embed-
ded
ICC
profile
equals
value of
profile-
Size
field in
ICC
header

iccPermittedProfileClass
(if meth
equals
“Re-
stricted
ICC”)

ICC
profile
class is
“input
device”
or
“display
de-
vice”2

iccNoLUTBasedProfile
(if meth
equals
“Re-
stricted
ICC”)

ICC
profile
type is
not N-
component
LUT
based
(which
is not
allowed
in JP2)

2Originally ISO/IEC 15444-1 only allowed “input device” profiles. Support of “display
device” profiles was added through an amendment to the standard in 2013. The behaviour of
jpylyzer is consistent with this amendment.

http://www.itu.int/rec/T-REC-T.800-201303-P!Amd6/en

52 CHAPTER 6. JP2: BOX BY BOX

6.8 Palette box (child of JP2 Header box)

This (optional) box specifies the palette which maps a single component in index
space to a multiple-component image.

6.8.1 Element name

paletteBox

6.8.2 Reported properties

Property
Description

nE Number of
entries in
the table

nPC Number of
palette
columns

bSign* Indicates
whether
values
created by
this palette
column are
signed or
unsigned
(repeated for
each
column)

bDepth* Bit depth of
values
created by
this palette
column
(repeated for
each
column)

6.9. COMPONENT MAPPING BOX (CHILD OF JP2 HEADER BOX) 53

Property
Description

cP** Value for
this entry
(repeated for
each column,
and for the
number of
entries)

6.8.3 Tests

Test name True if
nEIsValid nE is within range [0,1024]
nPCIsValid nPC is within range [1,255]
bDepthIsValid* bDepth is within range [1,38] (repeated for each column)

6.9 Component Mapping box (child of JP2
Header box)

This (optional) box specifies the mapping between a palette and codestream
components.

6.9.1 Element name

componentMappingBox

6.9.2 Reported properties

Property
Description

cMP* Component
index
(repeated for
each
channel)

54 CHAPTER 6. JP2: BOX BY BOX

Property
Description

mTyp* Specifies
how channel
is generated
from
codestream
component
(repeated for
each
channel)

pCol* Palette
component
index
(repeated for
each
channel)

6.9.3 Tests

Test name True if
cMPIsValid cMP is within range [0,16384]
mTypIsValid* mTyp is within range [0,1] (repeated for each channel)
pColIsValid* pCol is 0 if mTyp is 0 (repeated for each channel)

6.10 Channel Definition box (child of JP2
Header box)

This (optional) box specifies the type and ordering of the components within
the codestream, as well as those created by the application of a palette.

6.10.1 Element name

channelDefinitionBox

6.10.2 Reported properties

6.10. CHANNEL DEFINITION BOX (CHILD OF JP2 HEADER BOX) 55

Property Description
n Number of channel descriptions
cN* Channel index (repeated for each channel)
cTyp* Channel type (repeated for each channel)
cAssoc* Channel association (repeated for each channel)

6.10.3 Tests

Test
name True if
nIsValid n is

within
range
[1,
65535]

boxLengthIsValid(Size of
box – 2)
/ equals
6*n

cNIsValid* cN is
within
range
[0,
65535]
(re-
peated
for each
chan-
nel)

cTypIsValid*cType
is
within
range
[0,
65535]
(re-
peated
for each
chan-
nel)

56 CHAPTER 6. JP2: BOX BY BOX

Test
name True if
cAssocIsValid*cAssoc

is
within
range
[0,
65535]
(re-
peated
for each
chan-
nel)

6.11 Resolution box (child of JP2 Header box,
superbox)

This (optional) box contains the grid resolution.

6.11.1 Element name

resolutionBox

6.11.2 Reported properties

Since this is a superbox, it contains one or two child boxes. These are represented
as child elements in the properties tree:

Child element
Description

captureResolutionBox
(section 6.12)

Properties
from
Capture
Resolution
box

6.11. RESOLUTION BOX (CHILD OF JP2 HEADER BOX, SUPERBOX)57

Child element
Description

displayResolutionBox
(section 6.13)

Properties
from
Default
Display
Resolution
box

6.11.3 Tests

Test
name True if
containsCaptureOrDisplayResolutionBoxBox

con-
tains
either a
Cap-
ture
Resolu-
tion
box or
a
Default
Display
Resolu-
tion
box, or
both

noMoreThanOneCaptureResolutionBoxBox
con-
tains
no
more
than
one
Cap-
ture
Resolu-
tion
box

58 CHAPTER 6. JP2: BOX BY BOX

Test
name True if
noMoreThanOneDisplayResolutionBoxBox

con-
tains
no
more
than
one
Default
Display
Resolu-
tion
box

6.12 Capture Resolution box (child of Resolu-
tion box)

This (optional) box specifies the grid resolution at which the image was cap-
tured.

6.12.1 Element name

captureResolutionBox

6.12.2 Reported properties

Resolution information in this box is stored as a set of vertical and horizontal
numerators, denominators and exponents. Jpylyzer also reports the correspond-
ing grid resolutions in pixels per meter and pixels per inch, which are calculated
from these values.

Property
Description

vRcN Vertical grid
resolution
numerator

vRcD Vertical grid
resolution
denominator

6.12. CAPTURE RESOLUTION BOX (CHILD OF RESOLUTION BOX) 59

Property
Description

hRcN Horizontal
grid
resolution
numerator

hRcD Horizontal
grid
resolution
denominator

vRcE Vertical grid
resolution
exponent

hRcE Horizontal
grid
resolution
exponent

vRescInPixelsPerMeterVertical grid
resolution,
expressed in
pixels per
meter3

hRescInPixelsPerMeterHorizontal
grid
resolution,
expressed in
pixels per
meter4

vRescInPixelsPerInchVertical grid
resolution,
expressed in
pixels per
inch5

hRescInPixelsPerInchHorizontal
grid
resolution,
expressed in
pixels per
inch6

3Calculated as: vRcN vRcD • 10 vRcE
4Calculated as: hRcN hRcD • 10 hRcE
5Calculated as: vRescInPixelsPerMeter • 25.4 • 10 -3
6Calculated as: hRescInPixelsPerMeter • 25.4 • 10 -3

60 CHAPTER 6. JP2: BOX BY BOX

6.12.3 Tests

Test name True if
boxLengthIsValid Size of box contents equals 10 bytes
vRcNIsValid vRcN is within range [1,65535]
vRcDIsValid vRcD is within range [1,65535]
hRcNIsValid hRcN is within range [1,65535]
hRcDIsValid hRcD is within range [1,65535]
vRcEIsValid vRcE is within range [-127,128]
hRcEIsValid hRcE is within range [-127,128]

6.13 Default Display Resolution box (child of
Resolution box)

This (optional) box specifies the default grid resolution at which the image
should be displayed.

6.13.1 Element name

displayResolutionBox

6.13.2 Reported properties

Resolution information in this box is stored as a set of vertical and horizontal
numerators, denominators and exponents. Jpylyzer also reports the correspond-
ing grid resolutions in pixels per meter and pixels per inch, which are calculated
from these values.

Property
Description

vRdN Vertical grid
resolution
numerator

vRdD Vertical grid
resolution
denominator

hRdN Horizontal
grid
resolution
numerator

6.13. DEFAULT DISPLAY RESOLUTION BOX (CHILD OF RESOLUTION BOX)61

Property
Description

hRdD Horizontal
grid
resolution
denominator

vRdE Vertical grid
resolution
exponent

hRdE Horizontal
grid
resolution
exponent

vResdInPixelsPerMeterVertical grid
resolution,
expressed in
pixels per
meter7

hResdInPixelsPerMeterHorizontal
grid
resolution,
expressed in
pixels per
meter8

vResdInPixelsPerInchVertical grid
resolution,
expressed in
pixels per
inch9

hResdInPixelsPerInchHorizontal
grid
resolution,
expressed in
pixels per
inch10

6.13.3 Tests

7Calculated as: vRdN vRdD • 10 vRdE
8Calculated as: hRdN hRdD • 10 hRdE
9Calculated as: vResdInPixelsPerMeter • 25.4 • 10 -3

10Calculated as: hResdInPixelsPerMeter • 25.4 • 10 -3

62 CHAPTER 6. JP2: BOX BY BOX

Test name True if
boxLengthIsValid Size of box contents equals 10 bytes
vRdNIsValid vRdN is within range [1,65535]
vRdDIsValid vRdD is within range [1,65535]
hRdNIsValid hRdN is within range [1,65535]
hRdDIsValid hRdD is within range [1,65535]
vRdEIsValid vRdE is within range [-127,128]
hRdEIsValid hRdE is within range [-127,128]

6.14 Contiguous Codestream box

This box contains the codestream. See chapter 7.

6.15 Intellectual Property box

This (optional) box contains intellectual property information about the image.
The JP2 format specification (ISO/IEC 15444-1) does not provide any specific
information about this box, other than stating that “the definition of the format
of [its] contents […] is reserved for ISO”. As a result, jpylyzer does not currently
include a validator function for this box, which is now simply ignored. Jpylyzer
will display a user warning message in that case.

6.16 XML box

This (optional) box contains XML formatted information.

6.16.1 Element name

xmlBox

6.16.2 Reported properties

If the contents of this box are well-formed XML (see ‘tests’ below), the ‘xmlBox’
element in the properties tree will contain the contents of the XML box. Note
that, depending on the character encoding of the original XML, it may contain
characters that are not allowed in the encoding that is used for jpylyzer’s output.
Any such characters will be represented by numerical entity references in the
output. If the box contents are not well-formed XML, no properties are reported
for this box.

6.17. UUID BOX 63

6.16.3 Tests

Test name True if
containsWellformedXML Contents of box are parsable, well-formed XML

Note that jpylyzer does not check whether the XML is valid, as this is not
required by the standard. Besides, doing so would make jpylyzer significantly
slower for XML that contains references to external schemas and DTDs.

6.17 UUID box

This (optional) box contains additional (binary) information, which may be
vendor-specific. Some applications (e.g. Kakadu and ExifTool) also use this box
for storing XMP metadata (see Section 1.1.4 in Part 3 of the XMP specifica-
tion11).

6.17.1 Element name

uuidBox

6.17.2 Reported properties

If the value of uuid indicates the presence of XMP metadata and the contents
of this box are well-formed XML, (see ‘tests’ below), the ‘uuidBox’ element in
the properties tree will contain the XMP data. Note that, depending on the
character encoding of the original XML, it may contain characters that are not
allowed in the encoding that is used for jpylyzer’s output. Any such characters
will be represented by numerical entity references in the output. In all other
cases, the ‘uuidBox’ element will contain a standard string representation the
of UUID.

11Link: http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/
xmp/pdfs/cs6/XMPSpecificationPart3.pdf

http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/cs6/XMPSpecificationPart3.pdf
http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/cs6/XMPSpecificationPart3.pdf

64 CHAPTER 6. JP2: BOX BY BOX

Property
Description

uuid Standard
string repre-
sentation of
UUID (only
if uuid has
value other
than
be7acfcb-
97a9-42e8-
9c71-
999491e3afac).
For an
explanation
of UUIDs
see
e.g. Leach et
al., 2005.

XMP
data

XMP
metadata
(only if
uuid has
value
be7acfcb-
97a9-42e8-
9c71-
999491e3afac)

Note that except for the XMP case, jpylyzer will not be able to report any
information on the actual contents of this box, since it is defined outside of the
scope of JPEG 2000.

6.17.3 Tests

6.18. UUID INFO BOX (SUPERBOX) 65

Test
name True if
boxLengthIsValidSize of

box
con-
tents is
greater
than 16
bytes

containsWellformedXMLContents
of box
are
parsable,
well-
formed
XML
(this
test is
only
per-
formed
if uuid
has
value
be7acfcb-
97a9-
42e8-
9c71-
999491e3afac)

6.18 UUID Info box (superbox)

This (optional) box contains additional information associated with a UUID.

6.18.1 Element name

uuidInfoBox

66 CHAPTER 6. JP2: BOX BY BOX

6.18.2 Reported properties

This is a superbox which contains two child boxes. These are represented as
child elements in the properties tree:

Child element Description
uuidListBox (section 6.19) Properties from UUID List box
urlBox (section 6.20) Properties from Data Entry URL box

6.18.3 Tests

Test name True if
containsOneListBox Box contains exactly one UUID List box
containsOneURLBox Box contains exactly one Data Entry URL box

6.19 UUID List box (child of UUID Info box)

This (optional) box specifies a list of UUIDs.

6.19.1 Element name

uuidListBox

6.19.2 Reported properties

Property Description
nU Number of UUIDs
uuid* Standard string representation of UUID (repeated nU times)

6.19.3 Tests

Test name True if
boxLengthIsValid Size of box equals nU * 16 + 2

6.20. DATA ENTRY URL BOX (CHILD OF UUID INFO BOX) 67

6.20 Data Entry URL box (child of UUID Info
box)

This (optional) box specifies a URL.

6.20.1 Element name

urlBox

6.20.2 Reported properties

Property
Description

version Version
number

loc Location,
which
specifies a
URL of the
additional
information
associated
with the
UUIDs in
the UUID
List box
that resides
in the same
UUID Info
box

6.20.3 Tests

68 CHAPTER 6. JP2: BOX BY BOX

Test
name True if
flagIsValid Three

bytes
that
make
up
“flag”
field
equal
0x00 00
00
(‘flag’ is
not re-
ported
to
output
because
it only
con-
tains
null
bytes)

locIsUTF8 Location
(URL)
can be
de-
coded
to
UTF-8

locHasNullTerminatorLocation
(URL)
is a null-
terminated
string

6.21 Unknown box

An image may contain boxes that are not defined by ISO/IEC 15444-1. Al-
though jpylyzer ignores such boxes, it will report some minimal info that will
allow interested users to identify them to a limited extent.

6.22. TOP-LEVEL TESTS AND PROPERTIES 69

6.21.1 Element name

unknownBox

6.21.2 Reported properties

Property
Description

boxType Four-
character
text string
that
specifies the
type of
information
that is
found in
this box
(corresponds
to TBox in
section I.4
of ISO/IEC
15444-1).

6.22 Top-level tests and properties

This section describes the tests and output for the top file level.

6.22.1 Element name

properties

6.22.2 Reported properties

The metrics that are listed here are not ‘properties’ in a strict sense; instead they
are secondary or derived metrics that are calculated by combining information
from different parts / boxes of the file.

Property Description
compressionRatio Compression ratio

70 CHAPTER 6. JP2: BOX BY BOX

The compression ratio is calculated as the ratio between the size of the uncom-
pressed image data and the actual file size:

compressionRatio = sizeUncompressed sizeCompressed

Here, sizeCompressed is simply the file size (fileSizeInBytes in output file’s ‘file-
Info’ element). The uncompressed size (in bytes) can be calculated by multiply-
ing the number of bytes per pixel by the total number of pixels:

sizeUncompressed = 1 8 � i = 1 nC bPCDepth i • height • width

With:

nC number of image components (from Image Header box)
i component index
bPCDepthi bits per component for component i (from Image Header box or

Bits Per Component box)
height image height (from Image Header box)
width image width (from Image Header box)

In addition, the root of the properties tree contains the elements for all top-level
boxes:

Child element
Description

signatureBox
(section 6.2)

Properties
from JPEG
2000
Signature
box

fileTypeBox
(section 6.3)

Properties
from File
Type box

jp2HeaderBox
(section 6.4)

Properties
from JP2
Header box

contiguousCodestreamBox
(chapter 7)

Properties
from
Contiguous
Codestream
box

intellectualPropertyBox
(section 6.15)

Properties
from
Intellectual
Property
box
(optional)

6.22. TOP-LEVEL TESTS AND PROPERTIES 71

Child element
Description

xmlBox
(section 6.16)

Properties
from XML
box
(optional)

uuidBox
(section 6.17)

Properties
from UUID
box
(optional)

uuidInfoBox
(section 6.18)

Properties
from UUID
Info box
(optional)

6.22.3 Tests

The tests that jpylyzer performs at the root level fall in either of the following
two categories:

1. Tests for the presence of required top-level boxes, the order in which they
appear and restrictions on the number of instances for specific boxes

2. Tests for consistency of information in different parts of the file. In partic-
ular, a lot of the information in the Image Header box is redundant with
information in the codestream header, and jpylyzer performs a number of
tests to verify the consistency between these two.

Test
name True if
containsSignatureBoxFile

root
con-
tains a
JPEG
2000
Signa-
ture
box

72 CHAPTER 6. JP2: BOX BY BOX

Test
name True if
containsFileTypeBoxFile

root
con-
tains a
File
Type
box

containsJP2HeaderBoxFile
root
con-
tains a
JP2
Header
box

containsContiguousCodestreamBoxFile
root
con-
tains a
Con-
tiguous
Code-
stream
box

6.22. TOP-LEVEL TESTS AND PROPERTIES 73

Test
name True if
containsIntellectualPropertyBoxFile

root
con-
tains
an
Intellec-
tual
Prop-
erty
box,
which
is re-
quired
if iPR
field in
Image
Header
Box
equals 1
(test is
skipped
other-
wise)

firstBoxIsSignatureBoxFirst
box is
JPEG
2000
Signa-
ture
box

secondBoxIsFileTypeBoxSecond
box is
File
Type
box

74 CHAPTER 6. JP2: BOX BY BOX

Test
name True if
locationJP2HeaderBoxIsValidJP2

Header
box is
located
after
File
Type
Box
and
before
(first)
Con-
tiguous
Code-
stream
box

noMoreThanOneSignatureBoxFile
root
con-
tains
no
more
than
one
JPEG
2000
Signa-
ture
box

noMoreThanOneFileTypeBoxFile
root
con-
tains
no
more
than
one File
Type
box

6.22. TOP-LEVEL TESTS AND PROPERTIES 75

Test
name True if
noMoreThanOneJP2HeaderBoxFile

root
con-
tains
no
more
than
one
JP2
Header
box

heightConsistentWithSIZValue
of
height
from
Image
Header
Box
equals
ysiz
–yOsiz
from
code-
stream
SIZ
header

widthConsistentWithSIZValue
of width
from
Image
Header
Box
equals
xsiz
–xOsiz
from
code-
stream
SIZ
header

76 CHAPTER 6. JP2: BOX BY BOX

Test
name True if
nCConsistentWithSIZValue

of nC
from
Image
Header
Box
equals
csiz
from
code-
stream
SIZ
header

bPCSignConsistentWithSIZValues
of bPC-
Sign
from
Image
Header
box (or
Bits
Per
Compo-
nent
box)
are
equal
to
corre-
spond-
ing
ssizSign
values
from
code-
stream
SIZ
header

6.22. TOP-LEVEL TESTS AND PROPERTIES 77

Test
name True if
bPCDepthConsistentWithSIZValues

of
bPCDepth
from
Image
Header
box (or
Bits
Per
Compo-
nent
box)
are
equal
to
corre-
spond-
ing
ssizDepth
values
from
code-
stream
SIZ
header

78 CHAPTER 6. JP2: BOX BY BOX

Chapter 7

Contiguous Codestream
box

7.1 General codestream structure

The Contiguous Codestream box holds the JPEG 2000 codestream, which con-
tains the actual image data in a JP2.

7.1.1 Markers and marker segments

A codestream is made up of a number of functional entities which are called
markers and marker segments. A marker is essentially a 2-byte delimiter that
delineates the start or end position of a functional entity. A marker segment
is the combination of a marker and a set of associated parameters (segment
parameters). However, not every marker has any associated parameters.

7.1.2 General structure of the codestream

The codestream is made up of a number of components. The Figure below gives
an overview.

From top to bottom, the Figure shows the following components:

1. A start of codestream (SOC) marker, which indicates the start of the
codestream

2. A main codestream header (which includes a number of header marker
segments)

79

80 CHAPTER 7. CONTIGUOUS CODESTREAM BOX

Figure 7.1: General structure of a JPEG 2000 codestream.

7.2. LIMITATIONS OF CODESTREAM VALIDATION 81

3. A sequence of one or more tile parts. Each tile part consists of the following
components:

a. A start of tile-part (SOT) marker segment, which indicates the start
of a tile part, and which also contains index information of the tile
part and its associated tile

b. Optionally this may be followed by one or more additional tile-part
header marker segments

c. A start of data (SOD) marker that indicates the start of the bitstream
for the current tile part

d. The bitstream

4. An ‘end of codestream’ (EOC) marker that indicates the end of the code-
stream.

7.2 Limitations of codestream validation

It is important to stress here that jpylyzer currently doesn’t support the full set
of marker segments that can occur in a codestream. As a result, the validation
of codestreams is somewhat limited. These limitations are discussed in this
section.

7.2.1 Main codestream header

Annex A of ISO/IEC 15444-1 lists a total of 13 marker segments that can occur
in the main codestream header. Most of these are optional. The current version
of jpylyzer only offers full support (i.e. reads and validates) for the following
main header marker segments (which includes all the required ones):

• Start of codestream (SOC) marker segment (required)

• Image and tile size (SIZ) marker segment (required)

• Coding style default (COD) marker segment (required)

• Quantization default (QCD) marker segment (required)

• Comment (COM) marker segment (optional)

In addition the codestream header may also contain any of the following marker
segments, which are all optional:

• Coding style component (COC) marker segment (optional)*

• Region-of-interest (RGN) marker segment (optional) *

• Quantization component (QCC) marker segment (optional) *

82 CHAPTER 7. CONTIGUOUS CODESTREAM BOX

• Progression order change (POC) marker segment (optional) *

• Packet length, main header (PLM) marker segment (optional) *

• Packed packet headers, main header (PPM) marker segment (optional) *

• Tile-part lengths (TLM) marker segment (optional) *

• Component registration (CRG) marker segment (optional) *

The above marker segments (which are marked with an asterisk) are only mini-
mally supported at this stage: if jpylyzer encounters any of them, it will include
the corresponding element in the properties element of the output. However, jpy-
lyzer currently does not analyse the contents of these marker segments, which
means that the respective elements in the output will be empty.

7.2.2 Tile parts

The tile part validation has similar limitations. The standard lists 11 marker
segments that can occur in the tile part header. Currently, jpylyzer only fully
supports the following ones:

• Start of tile part (SOT) marker segment (required)

• Coding style default (COD) marker segment (optional)

• Quantization default (QCD) marker segment (optional)

• Comment (COM) marker segment (optional)

• Start of data (SOD) marker segment (required)

In addition the following optional marker segments may also occur:

• Coding style component (COC) marker segment (optional)*

• Region-of-interest (RGN) marker segment (optional) *

• Quantization component (QCC) marker segment (optional) *

• Progression order change (POC) marker segment (optional) *

• Packet length, tile-part header (PLT) marker segment (optional) *

• Packed packet headers, tile-part header (PPT) marker segment (optional)
*

These marker segments (which are marked with an asterisk) are only minimally
supported at this stage: if jpylyzer encounters any of them, it will include
the corresponding element in the properties element of the output. However,
jpylyzer currently does not analyse their contents, and the respective elements
in the output will be empty.

7.3. STRUCTURE OF REPORTED OUTPUT 83

7.2.3 Bit streams

In addition to the above limitations, jpylyzer can not be used to establish
whether the data in the bitstream are correct (this would require decoding
the compressed image data, which is completely out of jpylyzer’s scope)1. As
a result, if jpylyzer is used as part of a quality assurance workflow, it is rec-
ommended to also include an additional check on the image contents2. Also,
jpylyzer does not perform any checks on marker segments within the bit-stream:
start-of packet (SOP) and end-of-packet (EPH) markers.

7.2.4 Detection of incomplete or truncated codestreams

A JP2’s tile part header contains information that makes it possible to detect
incomplete and truncated codestreams in most cases. Depending on the encoder
software used, this method may fail for images that only contain one single tile
part (i.e. images that do not contain tiling).

7.2.5 Current limitations of comment extraction

Both the codestream header and the tile part header can contain comment
marker segments, which are used for embedding arbitrary binary data or text.
Jpylyzer will extract the contents of any comments that are text.

7.3 Structure of reported output

The Figure below illustrates the structure of jpylyzer’s codestream-level output.

At the top level, the SIZ, COD, QCD and COM marker segments are each
represented as individual sub elements. The tile part properties are nested in
a tileParts element, where each individual tile part is represented as a separate
tilePart sub element.

7.4 Contiguous Codestream box

7.4.1 Element name

contiguousCodestreamBox
1However, support for start of packet (SOP) and end of packet (EPH) markers may be

included in future versions.
2For example, in a TIFF to JP2 conversion workflow one could include a pixel-by-pixel

comparison of the values in the TIFF and the JP2.

84 CHAPTER 7. CONTIGUOUS CODESTREAM BOX

Figure 7.2: Structure of codestream-level XML output.

7.4. CONTIGUOUS CODESTREAM BOX 85

7.4.2 Reported properties

The reported properties for this box are organised into a number groups, which
are represented as child elements in the properties tree:

Child element
Description

siz (section
7.5)

Properties
from the
image and
tile size
(SIZ)
marker
segment
(codestream
main
header)

cod (section
7.6)

Properties
from the
coding style
default
(COD)
marker
segment
(codestream
main
header)

qcd (section
7.7)

Properties
from the
quantization
default
(QCD)
marker
segment
(codestream
main
header)

86 CHAPTER 7. CONTIGUOUS CODESTREAM BOX

Child element
Description

com (section
7.8)

Properties
from the
(optional)
comment
(COM)
marker
segment
(codestream
main
header)

tileParts
(section 7.9)

Properties
from
individual
tile parts

7.4.3 Tests

Test
name True if
codestreamStartsWithSOCMarkerFirst 2

bytes in
code-
stream
consti-
tute a
start of
code-
stream
(SOC)
marker
seg-
ment

7.4. CONTIGUOUS CODESTREAM BOX 87

Test
name True if
foundSIZMarkerSecond

marker
seg-
ment in
code-
stream
is
image
and tile
size
(SIZ)
marker
seg-
ment

foundCODMarkerCodestream
main
header
con-
tains
coding
style
default
(COD)
marker
seg-
ment

foundQCDMarkerCodestream
main
header
con-
tains
quanti-
zation
default
(QCD)
marker
seg-
ment

88 CHAPTER 7. CONTIGUOUS CODESTREAM BOX

Test
name True if
quantizationConsistentWithLevelsValues

of quan-
tization
parame-
ters
from
QCD
marker
seg-
ment
are con-
sistent
with
levels
from
COD
marker
seg-
ment3

foundExpectedNumberOfTilesNumber
of
encoun-
tered
tiles is
consis-
tent
with ex-
pected
number
of tiles
(as cal-
culated
from
SIZ
marker,
see
section
7.5)

3The consistency check verifies if the length of the quantization default marker segment
(lqcd from qcd) is consistent with the quantization style (qStyle from qcd) and the number of
decomposition levels (levels from cod). They are consistent if the following equation is true:

7.4. CONTIGUOUS CODESTREAM BOX 89

Test
name True if
foundExpectedNumberOfTilePartsFor all

tiles,
number
of
encoun-
tered
tile
parts is
consis-
tent
with ex-
pected
number
of tile
parts
(values
of tnsot
from
SOT
marker,
see
section
7.10)

foundEOCMarkerLast 2
bytes in
code-
stream
consti-
tute an
end of
code-
stream
(EOC)
marker
seg-
ment

90 CHAPTER 7. CONTIGUOUS CODESTREAM BOX

7.5 Image and tile size (SIZ) marker segment
(child of Contiguous Codestream box)

7.5.1 Element name

siz

7.5.2 Reported properties

Property
Description

lsiz Length of
SIZ marker
segment in
bytes

rsiz Decoder
capabilities

xsiz Width of
reference
grid

ysiz Heigth of
reference
grid

xOsiz Horizontal
offset from
origin of
reference
grid to left
of image
area

yOsiz Vertical
offset from
origin of
reference
grid to top
of image
area

7.5. IMAGE AND TILE SIZE (SIZ) MARKER SEGMENT (CHILD OF CONTIGUOUS CODESTREAM BOX)91

Property
Description

xTsiz Width of
one
reference
tile with
respect to
the
reference
grid

yTsiz Height of
one
reference
tile with
respect to
the
reference
grid

xTOsiz Horizontal
offset from
origin of
reference
grid to left
side of first
tile

yTOsiz Vertical
offset from
origin of
reference
grid to top
side of first
tile

numberOfTilesNumber of
tiles4

csiz Number of
components

4Calculated as: numberOfTiles = [xsiz - xOsiz xTsiz] • [ysiz - yOsiz yTsiz]

92 CHAPTER 7. CONTIGUOUS CODESTREAM BOX

Property
Description

ssizSign* Indicates
whether
image
component
is signed or
unsigned
(repeated for
each
component)

ssizDepth* Number of
bits for this
component
(repeated for
each
component)

xRsiz* Horizontal
separation
of sample of
this
component
with respect
to reference
grid
(repeated for
each
component)

yRsiz* Vertical
separation
of sample of
this
component
with respect
to reference
grid
(repeated for
each
component)

7.5.3 Tests

7.5. IMAGE AND TILE SIZE (SIZ) MARKER SEGMENT (CHILD OF CONTIGUOUS CODESTREAM BOX)93

Test
name True if
lsizIsValid lsiz is

within
range
[41,49190]

rsizIsValid rsiz
equals 0
(“ISO/IEC
15444-
1”), 1
(“Pro-
file 0”)
or 2
(“Pro-
file 1”)

xsizIsValid xsiz is
within
range
[1,232 -
1]

ysizIsValid ysiz is
within
range
[1,232 -
1]

xOsizIsValid xOsiz is
within
range
[0,232 -
2]

yOsizIsValid yOsiz is
within
range
[0,232 -
2]

xTsizIsValid xTsiz is
within
range
[1,232 -
1]

94 CHAPTER 7. CONTIGUOUS CODESTREAM BOX

Test
name True if
yTsizIsValid yTsiz is

within
range
[1,232 -
1]

xTOsizIsValidxTOsiz
is
within
range
[0,232 -
2]

yTOsizIsValidyTOsiz
is
within
range
[0,232 -
2]

csizIsValid csiz is
within
range
[1,16384]

lsizConsistentWithCsizlsiz
equals
38 +
3*csiz

ssizIsValid* ssizDepth
is
within
range
[1,38]
(re-
peated
for each
compo-
nent)

7.6. CODING STYLE DEFAULT (COD) MARKER SEGMENT 95

Test
name True if
xRsizIsValid*xRsiz is

within
range
[1,255]
(re-
peated
for each
compo-
nent)

yRsizIsValid*yRsiz is
within
range
[1,255]
(re-
peated
for each
compo-
nent)

7.6 Coding style default (COD) marker segment

7.6.1 Element name

cod

7.6.2 Reported properties

Property
Description

lcod Length of
COD
marker
segment in
bytes

96 CHAPTER 7. CONTIGUOUS CODESTREAM BOX

Property
Description

precincts Indicates
use of
precincts
(“yes”/“no”)

sop Indicates
use of start
of packet
marker
segments
(“yes”/“no”)

eph Indicates
use of end of
packet
marker
segments
(“yes”/“no”)

order Progression
order

layers Number of
layers

multipleComponentTransformationIndicates
use of
multiple
component
transforma-
tion
(“yes”/“no”)

levels Number of
decomposi-
tion levels

codeBlockWidthCode block
width

codeBlockHeightCode block
height

7.6. CODING STYLE DEFAULT (COD) MARKER SEGMENT 97

Property
Description

codingBypassIndicates
use of
coding
bypass
(“yes”/“no”)

resetOnBoundariesIndicates
reset of
context
probabilities
on coding
pass
boundaries
(“yes”/“no”)

termOnEachPassIndicates
termination
on each
coding pass
(“yes”/“no”)

vertCausalContextIndicates
vertically
causal
context
(“yes”/“no”)

predTerminationIndicates
predictable
termination
(“yes”/“no”)

segmentationSymbolsIndicates
use of seg-
mentation
symbols
(“yes”/“no”)

98 CHAPTER 7. CONTIGUOUS CODESTREAM BOX

Property
Description

transformationWavelet
transforma-
tion: “9-7
irreversible”
or “5-3
reversible”

precinctSizeX*Precinct
width
(repeated for
each
resolution
level; order:
low to high)
(only if
precincts is
“yes”)

precinctSizeY*Precinct
heigth
(repeated for
each
resolution
level; order:
low to high)
(only if
precincts is
“yes”)

7.6.3 Tests

Test
name True if
lcodIsValid lcod is

within
range
[12,45]

7.6. CODING STYLE DEFAULT (COD) MARKER SEGMENT 99

Test
name True if
orderIsValid order

equals 0
(“LRCP”),
1
(“RLCP”),
2
(“RPCL”),
3
(“PCRL”)
or 4
(“CPRL”)

layersIsValid layers
is
within
range
[1,65535]

multipleComponentTransformationIsValid

levelsIsValid levels is
within
range
[0,32]

lcodConsistentWithLevelsPrecinctslcod
equals
12
(precincts
= “no”)
or lcod
equals
13 +
levels
(precincts
=
“yes”)

codeBlockWidthExponentIsValidcodeBlockWidthExponent
is
within
range
[2,10]

100 CHAPTER 7. CONTIGUOUS CODESTREAM BOX

Test
name True if
codeBlockHeightExponentIsValidcodeBlockHeightExponent

is
within
range
[2,10]

sumHeightWidthExponentIsValidcodeBlockWidthExponent
+ code-
Block-
Height-
Expo-
nent �
12

precinctSizeXIsValid*precinctSizeX
� 2
(except
lowest
resolu-
tion
level)
(re-
peated
for each
resolu-
tion
level;
order:
low to
high)
(only if
precincts
is
“yes”)

7.7. QUANTIZATION DEFAULT (QCD) MARKER SEGMENT 101

Test
name True if
precinctSizeYIsValid*precinctSizeY

� 2
(except
lowest
resolu-
tion
level)
(re-
peated
for each
resolu-
tion
level;
order:
low to
high)
(only if
precincts
is
“yes”)

7.7 Quantization default (QCD) marker seg-
ment

7.7.1 Element name

qcd

7.7.2 Reported properties

Property
Description

lqcd Length of
QCD
marker
segment in
bytes

102 CHAPTER 7. CONTIGUOUS CODESTREAM BOX

Property
Description

qStyle Quantization
style for all
components

guardBits Number of
guard bits

epsilon* - If qStyle
equals 0
(“no quanti-
zation”):
Epsilon
exponent in
Eq E-5 of
ISO/IEC
15444-1
(repeated for
all decompo-
sition levels;
order: low
to high)- If
qStyle equals
1 (“scalar
derived”):
Epsilon
exponent in
Eq E-3 of
ISO/IEC
15444-1- If
qStyle equals
2 (“scalar
ex-
pounded”):
Epsilon
exponent in
Eq E-3 of
ISO/IEC
15444-1
(repeated for
all decompo-
sition levels;
order: low
to high)

7.7. QUANTIZATION DEFAULT (QCD) MARKER SEGMENT 103

Property
Description

mu* - If qStyle
equals 1
(“scalar
derived”):
mu constant
in Eq E-3 of
ISO/IEC
15444-1- if
qStyle equals
2 (“scalar
expounded”)
: mu
constant in
Eq E-3 of
ISO/IEC
15444-1
(repeated for
all decompo-
sition levels;
order: low
to high)

7.7.3 Tests

Test
name True if
lqcdIsValid lqcd is

within
range
[4,197]

104 CHAPTER 7. CONTIGUOUS CODESTREAM BOX

Test
name True if
qStyleIsValidqStyle

equals
0 (“no
quanti-
za-
tion”),
1
(“scalar
de-
rived”),
or 2
(“scalar
ex-
pounded”)

7.8 Comment (COM) marker segment

7.8.1 Element name

com

7.8.2 Reported properties

Property
Description

lcom Length of
COM
marker
segment in
bytes

7.8. COMMENT (COM) MARKER SEGMENT 105

Property
Description

rcom Registration
value of
marker
segment
(indicates
whether this
comment
contains
binary data
or text)

comment Embedded
comment as
text (only if
rcom = 1)

7.8.3 Tests

Test
name True if
lcomIsValid lqcd is

within
range
[5,65535]

rcomIsValid rcom
equals
0 (“bi-
nary”)
or 1
(“ISO/IEC
8859-15
(Latin”))

106 CHAPTER 7. CONTIGUOUS CODESTREAM BOX

Test
name True if
commentIsValidComment

is valid
ISO/IEC8859-
15 and
does
not
contain
control
charac-
ters,
other
than
tab,
newline
or
carriage
return

7.9 Tile part (child of Contiguous Codestream
box)

Tile-part level properties and tests. This is not a box or a marker segment!

7.9.1 Element name

tilePart (child of tileParts)

7.9.2 Reported properties

Each tile part element can contain a number of child elements:

Child element
Description

sot (section
7.10)

Properties
from start of
tile (SOT)
marker
segment

7.9. TILE PART (CHILD OF CONTIGUOUS CODESTREAM BOX) 107

Child element
Description

cod (section
7.6)

Properties
from the
(optional)
coding style
default
(COD)
marker
segment
(tile part
header)

qcd (section
7.7)

Properties
from the
(optional)
quantization
default
(QCD)
marker
segment
(tile part
header)

com (section
7.8)

Properties
from the
(optional)
comment
(COM)
marker
segment
(tile part
header)

7.9.3 Tests

108 CHAPTER 7. CONTIGUOUS CODESTREAM BOX

Test
name True if
foundNextTilePartOrEOCTile

part
start
offset +
tilePartLength
points
to
either
start of
new tile
or EOC
marker
(useful
for de-
tecting
within-
codestream
byte
corrup-
tion)

foundSODMarkerLast
marker
seg-
ment of
tile
part is
a start-
of-data
(SOD)
marker

7.10 Start of tile part (SOT) marker segment
(child of tile part)

7.10.1 Element name

sot

7.10. START OF TILE PART (SOT) MARKER SEGMENT (CHILD OF TILE PART)109

7.10.2 Reported properties

Property
Description

lsot Length of
SOT marker
segment in
bytes

isot Tile index
psot Length of

tile part
tpsot Tile part

index
tnsot Number of

tile-parts of
a tile in the
codestream
(value of 0
indicates
that number
of tile-parts
of tile in the
codestream
is not
defined in
current
header)

7.10.3 Tests

Test name True if
lsotIsValid lsot equals 10
isotIsValid isot is within range [0,65534]
psotIsValid psot is not within range [1,13]
tpsotIsValid tpsot is within range [0,254]

The following marker segments are only minimally supported: jpylyzer will
report their presence in the properties element, but it does not perform any
further tests or analyses. This may change in upcoming versions of the software.

110 CHAPTER 7. CONTIGUOUS CODESTREAM BOX

7.11 Coding style component (COC) marker
segment

7.11.1 Element name

coc

7.11.2 Reported properties

Property Description

7.11.3 Tests

Test name True if

7.12 Region-of-interest (RGN) marker segment

7.12.1 Element name

rgn

7.12.2 Reported properties

Property Description

7.12.3 Tests

Test name True if

7.14. PROGRESSION ORDER CHANGE (POC) MARKER SEGMENT 111

Test name True if

7.13 Quantization component (QCC) marker
segment

7.13.1 Element name

qcc

7.13.2 Reported properties

Property Description

7.13.3 Tests

Test name True if

7.14 Progression order change (POC) marker
segment

7.14.1 Element name

poc

7.14.2 Reported properties

Property Description

112 CHAPTER 7. CONTIGUOUS CODESTREAM BOX

7.14.3 Tests

Test name True if

7.15 Packet length, main header (PLM) marker
segment

7.15.1 Element name

plm

7.15.2 Reported properties

Property Description

7.15.3 Tests

Test name True if

7.16 Packed packet headers, main header
(PPM) marker segment

7.16.1 Element name

ppm

7.16.2 Reported properties

7.18. COMPONENT REGISTRATION (CRG) MARKER SEGMENT 113

Property Description

7.16.3 Tests

Test name True if

7.17 Tile-part lengths (TLM) marker segment

7.17.1 Element name

tlm

7.17.2 Reported properties

Property Description

7.17.3 Tests

Test name True if

7.18 Component registration (CRG) marker
segment

7.18.1 Element name

crg

114 CHAPTER 7. CONTIGUOUS CODESTREAM BOX

7.18.2 Reported properties

Property Description

7.18.3 Tests

Test name True if

7.19 Packet length, tile-part header (PLT)
marker segment

7.19.1 Element name

plt

7.19.2 Reported properties

Property Description

7.19.3 Tests

Test name True if

7.20. PACKED PACKET HEADERS, TILE-PART HEADER (PPT) MARKER SEGMENT115

7.20 Packed packet headers, tile-part header
(PPT) marker segment

7.20.1 Element name

ppt

7.20.2 Reported properties

Property Description

7.20.3 Tests

Test name True if

116 CHAPTER 7. CONTIGUOUS CODESTREAM BOX

Chapter 8

References

ICC. Specification ICC.1:1998-09 – File Format for Color Profiles. International
Color Consortium, 1998. http://www.color.org/ICC-1_1998-09.pdf.

ISO/IEC. Information technology — JPEG 2000 image coding system: Core
coding system. ISO/IEC 15444-1, Second edition. Geneva: ISO/IEC, 2004a.
http://www.jpeg.org/public/15444-1annexi.pdf (“Annex I: JP2 file format syn-
tax” only).

ISO/IEC. Information technology — JPEG 2000 image coding system: Ex-
tensions. ISO/IEC 15444-2, First edition. Geneva: ISO/IEC, 2004b. http:
//www.jpeg.org/public/15444-2annexm.pdf (“Annex M: JPX extended file for-
mat syntax” only).

Leach, P., Mealling, M. & Salz, R. A Universally Unique IDentifier (UUID)
URN namespace. Memo, IETF. http://tools.ietf.org/html/rfc4122.html.

117

http://www.color.org/ICC-1_1998-09.pdf
http://www.jpeg.org/public/15444-1annexi.pdf
http://www.jpeg.org/public/15444-2annexm.pdf
http://www.jpeg.org/public/15444-2annexm.pdf
http://tools.ietf.org/html/rfc4122.html

	Introduction
	About jpylyzer
	Validation: scope and restrictions
	Outline of this User Manual
	Funding
	License

	Installation and set-up
	Obtaining the software
	Installation of Python script (Linux/Unix, Windows, Mac OS X)
	Installation of Windows binaries (Windows only)
	Installation of Debian packages (Ubuntu/Linux)

	Using jpylyzer
	Overview
	Command-line usage
	Using jpylyzer as a Python module

	Structure of a JP2 file
	Scope of this chapter
	General format structure
	General structure of a box
	Defined boxes in JP2

	Output format
	Overview
	toolInfo element
	fileInfo element
	statusInfo element
	isValidJP2 element
	tests element
	properties element

	JP2: box by box
	About the properties and tests trees
	JPEG 2000 Signature box
	File Type box
	JP2 Header box (superbox)
	Image Header box (child of JP2 Header box)
	Bits Per Component box (child of JP2 Header box)
	Colour Specification box (child of JP2 Header box)
	Palette box (child of JP2 Header box)
	Component Mapping box (child of JP2 Header box)
	Channel Definition box (child of JP2 Header box)
	Resolution box (child of JP2 Header box, superbox)
	Capture Resolution box (child of Resolution box)
	Default Display Resolution box (child of Resolution box)
	Contiguous Codestream box
	Intellectual Property box
	XML box
	UUID box
	UUID Info box (superbox)
	UUID List box (child of UUID Info box)
	Data Entry URL box (child of UUID Info box)
	Unknown box
	Top-level tests and properties

	Contiguous Codestream box
	General codestream structure
	Limitations of codestream validation
	Structure of reported output
	Contiguous Codestream box
	Image and tile size (SIZ) marker segment (child of Contiguous Codestream box)
	Coding style default (COD) marker segment
	Quantization default (QCD) marker segment
	Comment (COM) marker segment
	Tile part (child of Contiguous Codestream box)
	Start of tile part (SOT) marker segment (child of tile part)
	Coding style component (COC) marker segment
	Region-of-interest (RGN) marker segment
	Quantization component (QCC) marker segment
	Progression order change (POC) marker segment
	Packet length, main header (PLM) marker segment
	Packed packet headers, main header (PPM) marker segment
	Tile-part lengths (TLM) marker segment
	Component registration (CRG) marker segment
	Packet length, tile-part header (PLT) marker segment
	Packed packet headers, tile-part header (PPT) marker segment

	References

