linbox
Class Hierarchy

Go to the graphical class hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:
[detail level 1234]
 CBitVectorBinary constant defined both for 32 and 64 bits
 CBlackboxArchetypeShowing the member functions provided by all blackbox matrix classes
 CBlackboxBlockContainerBase< _Field, _Blackbox >A base class for BlackboxBlockContainer
 CBlackboxBlockContainerBase< Field, Blackbox >
 CBlackboxContainerBase< Field, Blackbox >A base class for BlackboxContainer
 CBlackboxContainerBase< Field, _Blackbox >
 CBlackboxContainerBase< Field, Vector >
 CBlackboxContainerBase< LinBox::Modular< uint32_t >, Blackbox >
 CBlackboxFactory< Field, Blackbox >A tool for computations with integer and rational matrices
 CBlackboxFactory< Field, SparseMatrix< Field, Row > >
 CBlackboxSpecifierBlackboxSpecifier
 CBlasMatrix< _Field >Dense matrix representation
 CBlasMatrix< Domain >
 CBlasMatrix< Element >
 CBlasMatrix< Field >
 CBlasMatrix< LinBox::Modular< double > >
 CBlasMatrix< LinBox::Modular< uint32_t > >
 CBlasMatrix< LinBox::UnparametricField< Element > >
 CBlasMatrix< MultiModDouble >No Doc
 CBlasMatrixDomain< Field >Interface for all functionnalities provided for BlasMatrix
 CBlasMatrixDomain< _Field >
 CBlasMatrixDomain< LinBox::Modular< uint32_t > >
 CBlasMatrixDomainAddin< Field, Operand1, Operand2 >C += A
 CBlasMatrixDomainInv< MultiModDouble, BlasMatrix< MultiModDouble > >Specialisation for MultiModDouble
 CBlasMatrixDomainSubin< Field, Operand1, Operand2 >C -= A
 CBlasPermutation< _UnsignedInt >Lapack-style permutation
 CBlasPermutation< size_t >
 CBlasSubmatrix< _Field >Dense Submatrix representation
 CBlockHankelLiftingContainer< _Ring, _Field, _IMatrix, _FMatrix, _Block >Block Hankel LiftingContianer
 CBlockLanczosSolver< Field, Matrix >Block Lanczos iteration
 CBlockMasseyDomain< _Field, _Sequence >Compute the linear generator of a sequence of matrices
 CBlockMasseyDomain< Field, LinBox::BlackboxBlockContainerRecord >
 CBlockWiedemannLiftingContainer< _Ring, _Field, _IMatrix, _FMatrix >Block Wiedemann LiftingContianer
 CBooleanSwitchBoolean switch object
 CBooleanSwitchFactoryBoolean switch factory
 CButterfly< _Field, Switch >Switching Network based BlackBox Matrix
 CCekstvSwitch< Field >Butterfly switch object from preconditioner paper
 CCekstvSwitchFactory< Field >Cekstv switch factory
 CChineseRemainderSeq< CRABase >No doc
 CClassifyRing< Field >Default ring category
 CCommentatorGive information to user during runtime
 CCompose< _Blackbox1, _Blackbox2 >Blackbox of a product: $C = AB$, i.e $Cx \gets A(Bx)$
 CCompose< _Blackbox, _Blackbox >Specialization for _Blackbox1 = _Blackbox2
 CCompose< LinBox::Submatrix< Blackbox >, LinBox::Transpose< LinBox::Submatrix< Blackbox > > >
 CCompose< LinBox::Transpose< LinBox::Submatrix< Blackbox > >, LinBox::Submatrix< Blackbox > >
 CComposeOwner< _Blackbox1, _Blackbox2 >Blackbox of a product: $C = AB$, i.e $Cx \gets A(Bx)$
 CComposeTraits< IMatrix >Used in ..., for example
 CComposeTraits< BlasMatrix< Field > >Used in smith-binary, for example
 CBlasSubmatrix< _Field >::ConstIndexedIteratorRaw Indexed Iterator (const version)
 CBlasSubmatrix< _Field >::ConstIteratorRaw Iterators (const version)
 CCRASpecifierCRASpecifier
 CCRATraitsSolve using CRA (iterations uses SolveMethod)
 CDenseRowsMatrix< _Row >Dense row-wise matrix container
 CDiagonal< Field, Trait >Random diagonal matrices are used heavily as preconditioners
 CDiagonal< _Field, VectorCategories::DenseVectorTag >Specialization of Diagonal for application to dense vectors
 CDiagonal< _Field, VectorCategories::SparseAssociativeVectorTag >Specialization of Diagonal for application to sparse associative vectors
 CDiagonal< _Field, VectorCategories::SparseSequenceVectorTag >Specialization of Diagonal for application to sparse sequence vectors
 CDiagonal< Field >
 CDif< _Blackbox1, _Blackbox2 >Blackbox of a difference: C := A - B, i.e Cx = Ax - Bx
 CDiophantineSolver< QSolver >DiophantineSolver<QSolver> creates a diophantine solver using a QSolver to generate rational solutions
 CDirectSum< _Blackbox1, _Blackbox2 >If C = DirectSum(A, B) and y = xA and z = wB, then (y,z) = (x,w)C
 CDirectSum< Companion< _Field > >
 CDixonLiftingContainer< _Ring, _Field, _IMatrix, _FMatrix >Dixon Lifting Container
 CDotProductDomain< Modular< uint16_t > >Specialization of DotProductDomain for unsigned short modular field
 CDotProductDomain< Modular< uint32_t > >Specialization of DotProductDomain for uint32_t modular field
 CDotProductDomain< Modular< uint8_t > >Specialization of DotProductDomain for unsigned short modular field
 CDotProductDomain< ModularBalanced< double > >Specialization of DotProductDomain
 CEarlySingleCRA< Domain_Type >NO DOC
 CEchelonFormDomain< Field >Echelon form domain
 CBlockRing< _Field >::ElementDefault constructable wrapper for BlasMatrix
 CElementAbstractAbstract element base class, a technicality
 CElementArchetypeField and Ring element interface specification and archetypical instance class
 CEliminationSpecifierEliminationSpecifier
 CEliminator< Field, Matrix >Elimination system
 CEliminator< LinBox::Modular< uint32_t >, LinBox::ZeroOne >
 CExceptionThis is the exception class in LinBox
 CFieldAbstractField base class
 CFieldAXPY< Field >FieldAXPY object
 CFieldAXPY< Domain >
 CFieldAXPY< GF2 >
 CFieldAXPY< GivaroZpz< Givaro::Std16 > >
 CFieldAXPY< GivaroZpz< Givaro::Std32 > >
 CFieldAXPY< LinBox::Modular< double > >
 CFieldAXPY< LinBox::Modular< uint32_t > >
 CFieldAXPY< LinBox::ParamFuzzy >
 CFieldAXPY< Modular< _Element > >Specialization of FieldAXPY for parameterized modular field
 CFieldAXPY< Modular< double > >
 CFieldAXPY< Modular< float > >
 CFieldAXPY< Modular< int16_t > >
 CFieldAXPY< Modular< int32_t > >
 CFieldAXPY< Modular< int64_t > >
 CFieldAXPY< Modular< int8_t > >
 CFieldAXPY< Modular< uint16_t > >Specialization of FieldAXPY for uint16_t modular field
 CFieldAXPY< Modular< uint32_t > >Specialization of FieldAXPY for unsigned short modular field
 CFieldAXPY< Modular< uint8_t > >Specialization of FieldAXPY for uint8_t modular field
 CFieldAXPY< ModularBalanced< double > >Specialization of FieldAXPY
 CFieldAXPY< ModularBalanced< float > >
 CFieldAXPY< ModularBalanced< int32_t > >
 CFieldAXPY< ModularBalanced< int64_t > >
 CFieldAXPY< ModularCrooked< double > >
 CFieldAXPY< PIR_ntl_ZZ_p >
 CFieldAXPY< PIRModular< int32_t > >
 CFieldAXPY< Ring >
 CFieldAXPY< UnparametricField< integer > >NO DOc
 CFieldInterfaceThis field base class exists solely to aid documentation organization
 CFieldIO< _Element >Dummy field for conceptually unclear io
 CFieldTraits< Field >FieldTrait
 Cfoobar< LocalPIR >Test 1: Invariant factors of random dense matrices
 CFullMultipCRA< Domain_Type >NO DOC..
 CGaussDomain< _Field >Repository of functions for rank by elimination on sparse matrices
 CGaussDomain< Field >
 CGenericTagGeneric ring
 CVectorCategories::GenericVectorTagGeneric vector (no assumption is made)
 CGivaroField< BaseField >Give LinBox fields an allure of Givaro FieldsThis class adds the necessary requirements allowing the construction of an extension of a LinBox field or a givaro polynomial of a LinBox field ..
 CGivaroField< LinBox::GF2 >Give LinBox fields an allure of Givaro FieldsThis class adds the necessary requirements allowing the construction of an extension of a LinBox field
 CGivaroRnsFixedCRA< Domain_Type >NO DOC..
 CGivPolynomialRing< Domain, StorageTag >Polynomials
 CGmpRandomPrimeGenerating random prime integers, using the gmp library
 CGMPRationalElementElements of GMP_Rationals
 CHilbert_JIT_Entry< _Field >The object needed to build a Hilbert matrix as a JIT matrix
 CHom< Source, Target >Map element of source ring(field) to target ringAn instance of Hom is a homomorphism from a ring of type Source to a ring (usually field) of type Target
 CHom< BaseField, GivaroExtension< BaseField > >NO DOC
 CHybridSpecifierHybridSpecifier
 CIMLTraitsIML wrapper
 CInconsistentSystem< Vector >Exception thrown when the system to be solved is inconsistent
 CindexDomainClass used for permuting indices
 CBlasMatrix< _Field >::IndexedIteratorIndexed Iterator
 CBlasSubmatrix< _Field >::IndexedIteratorRaw Indexed Iterator
 CZeroOne< _Field >::IndexIteratorIndexIterator
 CZeroOne< GF2 >::IndexIteratorIndexIterator
 CInvalidMatrixInputException class for invalid matrix input
 CInverse< Blackbox >A Blackbox for the inverse
 CInverse< LinBox::Compose< LinBox::Submatrix< Blackbox >, LinBox::Transpose< LinBox::Submatrix< Blackbox > > > >
 CInverse< LinBox::Compose< LinBox::Transpose< LinBox::Submatrix< Blackbox > >, LinBox::Submatrix< Blackbox > > >
 CBlasSubmatrix< _Field >::IteratorRaw Iterators
 CZeroOne< _Field >::IteratorRaw iterator
 CZeroOne< GF2 >::IteratorRaw iterator
 CJIT_Matrix< _Field, JIT_EntryGenerator >Example of a blackbox that is space efficient, though not time efficient
 CJIT_Matrix< _Field, Hilbert_JIT_Entry< _Field > >
 CLABlockLanczosSolver< Field, Matrix >Biorthogonalising block Lanczos iteration
 CLanczosSolver< Field, Vector >Solve a linear system using the conjugate Lanczos iteration
 CLargeDoubleNO DOC
 CLastInvariantFactor< _Ring, _Solver >This is used in a Smith Form algorithm
 ClatticeMethodNTL methods
 CLinboxErrorBase class for execption handling in LinBox
 CLinBoxTagStructure for tags
 CLocal2_32Fast arithmetic mod 2^32, including gcd
 CLQUPMatrix< Field >LQUP factorisation
 CMasseyDomain< Field, Sequence >Berlekamp/Massey algorithm
 CMatrixArchetype< _Element >Directly-represented matrix archetype
 CMatrixCategoriesFor specializing matrix arithmetic
 CMatrixDomain< GF2 >Specialization of MatrixDomain for GF2
 CMatrixPermutation< _UnsignedInt >Permutation classique
 CMatrixRank< _Ring, _Field, _RandomPrime >Compute the rank of an integer matrix in place over a finite field by Gaussian elimination
 CMatrixStream< Field >MatrixStream
 CMatrixStream< LinBox::Modular< uint32_t > >
 CMatrixStreamReader< Field >An abstract base class to represent readers for specific formats
 CMatrixStreamReader< LinBox::Modular< uint32_t > >
 CMethodMethod specifiers for controlling algorithm choice
 CMGBlockLanczosSolver< Field, Matrix >Block Lanczos iteration
 CModular< _Element >Prime fields of positive characteristic implemented directly in LinBox
 CModular< Element >
 CModular< float >
 CModularBalancedRandIter< Element >Random field base element generator
 CModularCrookedRandIter< Element >Random field base element generator
 CModularRandIter< Element >Random field base element generator
 CMoorePenrose< Blackbox >Generalized inverse of a blackbox
 CMVProductDomain< Field >Helper class to allow specializations of certain matrix-vector products
 CMVProductDomain< Domain >
 CMVProductDomain< LinBox::Modular< double > >
 CMVProductDomain< LinBox::Modular< uint32_t > >
 CMVProductDomain< Modular< uint16_t > >Specialization of MVProductDomain for uint16_t modular field
 CMVProductDomain< Modular< uint32_t > >Specialization of MVProductDomain for uint32_t modular field
 CMVProductDomain< Modular< uint8_t > >Specialization of MVProductDomain for uint8_t modular field
 CnaiveToom-Cook method
 CNoHomErrorError object for attempt to establish a Hom that cannot exist
 CNonzeroRandIter< Field, RandIter >Random iterator for nonzero random numbers
 CNonzeroRandIter< LinBox::Modular< uint32_t >, RandIter >
 CNTL_ZZInteger ring
 CNTL_ZZ_pWrapper of zz_p from NTL
 CNTL_zz_pLong ints modulo a positive integer
 CNTL_ZZ_pEWrapper of ZZ_pE from NTL Define a parameterized class to handle easily UnparametricField<NTL::ZZ_pE> field
 CNTL_zz_pE_InitialiserUse ZZ_pEBak mechanism too ?
 CNTL_zz_pXRing (in fact, a unique factorization domain) of polynomial with coefficients in class NTL_zz_p (integers mod a wordsize prime)
 CNTL_ZZ_pXRing (in fact, a unique factorization domain) of polynomial with coefficients in class NTL_ZZ_p (integers mod a wordsize prime)
 CNullMatrixThis is a representation of the 0 by 0 empty matrix which does not occupy memory
 COneInvariantFactor< _Ring, _LastInvariantFactor, _Compose, _RandomMatrix >Limited doc so far
 CPair< I, T >Pair of I and T : struct { column index, value }
 CPermutation< _Field, _Storage >Size is n
 CPermutation< _Field >
 CPID_doubleNO DOC
 CPID_integerDomain for integer operations
 CPlotStyle::PlotWhat style of graphic : histogram ? graph ?
 CPlotData< NAM >The raw data to plot
 CPlotGraph< NAM >The graph
 CPlotStyleRepresents a table of values to plot
 CPolynomialBB< Blackbox, Poly >Represent the matrix P(A) where A is a blackbox and P a polynomial
 CPolynomialBBOwner< Blackbox, Poly >Represent the matrix P(A) where A is a blackbox and P a polynomial
 CPowerGaussDomainPowerOfTwo< UnsignedIntType >Repository of functions for rank modulo a prime power by elimination on sparse matrices
 CPowerOfTwoModular< Ints >Ring of elements modulo some power of two
 CPreconditionFailedA precondition failed
 CPrimeStream< Element >Prime number stream
 CPowerOfTwoModular< Ints >::RandIterRandom iterator generator type
 CRandIterAbstractRandom field element generator
 CRandIterArchetypeRandom field element generator archetype
 CRandomDenseMatrix< Randiter, Field >Random Dense Matrix builder
 CRandomIntegerIter< _Unsigned >Random Integer Iterator
 CRandomIntegerIterator< _Unsigned >Random Prime Generator
 CRandomPrimeIterRandom Prime Iterator
 CRandomPrimeIteratorRandom Prime Generator
 CRankBuilderRandom method for constructing rank
 CRationalReconstruction< _LiftingContainer, RatRecon >Limited doc so far
 CRationalRemainder< RatCRABase >Chinese remainder of rationals
 CRationalRemainder2< RatCRABase, RatRecon >Chinese remainder of rationals
 CRationalSolver< Ring, Field, RandomPrime, MethodTraits >Interface for the different specialization of p-adic lifting based solvers
 CRationalSolver< Ring, Field, RandomPrime, BlockHankelTraits >Block Hankel
 CRationalSolver< Ring, Field, RandomPrime, BlockWiedemannTraits >Partial specialization of p-adic based solver with block Wiedemann algorithm
 CRationalSolver< Ring, Field, RandomPrime, DixonTraits >Partial specialization of p-adic based solver with Dixon algorithm
 CRationalSolver< Ring, Field, RandomPrime, SparseEliminationTraits >Sparse LU
 CRationalSolver< Ring, Field, RandomPrime, WanTraits >Solver using a hybrid Numeric/Symbolic computation
 CRationalSolver< Ring, Field, RandomPrime, WiedemannTraits >Partial specialization of p-adic based solver with Wiedemann algorithm
 CRawVector< Element >Canonical vector types
 CRawVector< Domain::Element >
 CRawVector< LinBox::Modular< uint32_t >::Element >
 CRawVector< LinBox::PID_integer::Element >
 CRawVector< Ring::Element >
 CRebind< XXX, U >Used in support of Hom, MatrixHom
 CBlasMatrix< _Field >::rebind< _Tp1 >Rebind operator
 CRebind< std::vector< T >, U >Rebind
 CReverseVector< Vector >Reverse vector class This class wraps an existing vector type and reverses its direction
 CRingInterfaceThis ring base class exists solely to aid documentation organization
 CRNS< Unsigned >RNS
 CScalarMatrix< _Field >Blackbox for aI
 CSigmaBasis< _Field >Implementation of $\sigma$-basis (minimal basis)
 CSmithFormBinary< _Ring, _oneInvariantFactor, _Rank >Compute Smith form
 CSmithFormIliopoulosThis is Iliopoulos' algorithm do diagonalize
 CSmithFormLocal< LocalPID >Smith normal form (invariant factors) of a matrix over a local ring
 CSolveFailedException thrown when the computed solution vector is not a true solution to the system, but none of the problems cited below exist
 CSolverTraitsSolver traits
 CSparse_Vector< T, I >Vector< Pair<T,I> > and actualsize
 CSparseLULiftingContainer< _Ring, _Field, _IMatrix, _FMatrix >SparseLULiftingContainer
 CSparseMatrixBase< _Element, _Row, Trait >Sparse matrix container This class acts as a generic row-wise container for sparse matrices
 CSparseMatrixBase< _Field::Element, _Row >
 CSparseMatrixBase< BElement, BRow >
 CSquarize< Blackbox >Transpose matrix without copying
 CSubiterator< Iterator >Subvector iterator class provides striding iterators
 CSubiterator< typename Rep::const_iterator >
 CSubiterator< typename Rep::iterator >
 CSubmatrix< Blackbox, Trait >Leading principal minor of existing matrix without copying
 CSubmatrix< Blackbox >
 CSubmatrix< Blackbox, VectorCategories::DenseVectorTag >Specialization for dense vectors
 CSubmatrixOwner< Blackbox, VectorCategories::DenseVectorTag >Specialization for dense vectors
 CSubvector< Iterator, ConstIterator >Dense subvectorThis class provides a statically sized subvector of a random access container (such as std::vector, deque)
 CSubvector< Subiterator< typename Rep::const_iterator > >
 CSubvector< Subiterator< typename Rep::iterator > >
 CSubvector< typename Rep::const_iterator >
 CSubvector< typename Rep::iterator, typename Rep::const_iterator >
 CSum< _Blackbox1, _Blackbox2 >Blackbox of a matrix sum without copying
 CSumOwner< _Blackbox1, _Blackbox2 >Blackbox of a matrix sum without copying
 CSylvester< _Field >This is a representation of the Sylvester matrix of two polynomials
 CPlotStyle::TermWhat format the plot should be in?
 CTernaryLatticeNO DOC
 CToeplitz< _CField, _PField >This is the blackbox representation of a Toeplitz matrix
 CToeplitz< _Field >
 CToeplitz< typename _PField::CoeffField, _PField >Specialization for when the field of matrix elements is the same as the coefficient field of the polynomial field
 CTranspose< Blackbox >Transpose matrix without copying
 CTranspose< LinBox::Submatrix< Blackbox > >
 CTransposedBlasMatrix< Matrix >TransposedBlasMatrix
 CTransposeMatrix< Matrix, Trait >Matrix transpose
 CTransposeMatrix< LinBox::SparseMatrix< _Field, _Row > >
 CTransposeOwner< Blackbox >Transpose matrix without copying
 CTriplesBB< _Field >Wrapper for NAG Sparse Matrix format
 CUnparametricRandIter< K >Unparameterized random field element generator template
 CUnparametricRandIter< NTL::ZZ_p >Constructor for random field element generator
 CVectorCategoriesList of vector categories
 CVectorFraction< Domain >VectorFraction<Domain> is a vector of rational elements with common reduced denominator
 CVectorFraction< Ring >
 CVectorStream< _Vector >Vector factory
 CVectorStream< BitVector >
 CVectorTraits< Vector >Vector traits template structure
 CWiedemannLiftingContainer< _Ring, _Field, _IMatrix, _FMatrix, _FPolynomial >Wiedemann LiftingContianer
 CWiedemannSolver< Field >Linear system solvers based on Wiedemann's method
 CZeroOne< _Field >Time and space efficient representation of sparse {0,1}-matrices
 CZeroOne< GF2 >Time and space efficient representation of sparse matrices over GF2
 CZeroOne< PID_integer >
 CZOQuad< _Field >A class of striped or block-decomposed zero-one matrices