public class Double2ByteOpenCustomHashMap extends AbstractDouble2ByteMap implements Serializable, Cloneable, Hash
Instances of this class use a hash table to represent a map. The table is filled up to a specified load factor, and then doubled in size to accommodate new entries. If the table is emptied below one fourth of the load factor, it is halved in size. However, halving is not performed when deleting entries from an iterator, as it would interfere with the iteration process.
Note that clear()
does not modify the hash table size.
Rather, a family of trimming
methods lets you control the size of the table; this is particularly useful
if you reuse instances of this class.
Hash
,
HashCommon
,
Serialized FormAbstractDouble2ByteMap.BasicEntry
Hash.Strategy<K>
Double2ByteMap.Entry, Double2ByteMap.FastEntrySet
DEFAULT_GROWTH_FACTOR, DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR, FAST_LOAD_FACTOR, FREE, OCCUPIED, PRIMES, REMOVED, VERY_FAST_LOAD_FACTOR
Constructor and Description |
---|
Double2ByteOpenCustomHashMap(double[] k,
byte[] v,
DoubleHash.Strategy strategy)
Creates a new hash map with
Hash.DEFAULT_LOAD_FACTOR as load factor using the elements of two parallel arrays. |
Double2ByteOpenCustomHashMap(double[] k,
byte[] v,
float f,
DoubleHash.Strategy strategy)
Creates a new hash map using the elements of two parallel arrays.
|
Double2ByteOpenCustomHashMap(Double2ByteMap m,
DoubleHash.Strategy strategy)
Creates a new hash map with
Hash.DEFAULT_LOAD_FACTOR as load factor copying a given type-specific one. |
Double2ByteOpenCustomHashMap(Double2ByteMap m,
float f,
DoubleHash.Strategy strategy)
Creates a new hash map copying a given type-specific one.
|
Double2ByteOpenCustomHashMap(DoubleHash.Strategy strategy)
Creates a new hash map with initial expected
Hash.DEFAULT_INITIAL_SIZE entries
and Hash.DEFAULT_LOAD_FACTOR as load factor. |
Double2ByteOpenCustomHashMap(int expected,
DoubleHash.Strategy strategy)
Creates a new hash map with
Hash.DEFAULT_LOAD_FACTOR as load factor. |
Double2ByteOpenCustomHashMap(int expected,
float f,
DoubleHash.Strategy strategy)
Creates a new hash map.
|
Double2ByteOpenCustomHashMap(Map<? extends Double,? extends Byte> m,
DoubleHash.Strategy strategy)
Creates a new hash map with
Hash.DEFAULT_LOAD_FACTOR as load factor copying a given one. |
Double2ByteOpenCustomHashMap(Map<? extends Double,? extends Byte> m,
float f,
DoubleHash.Strategy strategy)
Creates a new hash map copying a given one.
|
Modifier and Type | Method and Description |
---|---|
byte |
addTo(double k,
byte incr)
Adds an increment to value currently associated with a key.
|
void |
clear()
Removes all associations from this function (optional operation).
|
Double2ByteOpenCustomHashMap |
clone()
Returns a deep copy of this map.
|
boolean |
containsKey(double k)
Checks whether the given value is contained in
AbstractDouble2ByteMap.keySet() . |
boolean |
containsValue(byte v)
Checks whether the given value is contained in
AbstractDouble2ByteMap.values() . |
Double2ByteMap.FastEntrySet |
double2ByteEntrySet()
Returns a type-specific set view of the mappings contained in this map.
|
byte |
get(double k)
Returns the value to which the given key is mapped.
|
Byte |
get(Double ok) |
int |
growthFactor()
Deprecated.
Since
fastutil 6.1.0, hash tables are doubled when they are too full. |
void |
growthFactor(int growthFactor)
Deprecated.
Since
fastutil 6.1.0, hash tables are doubled when they are too full. |
int |
hashCode()
Returns a hash code for this map.
|
boolean |
isEmpty() |
DoubleSet |
keySet()
Returns a type-specific-set view of the keys of this map.
|
byte |
put(double k,
byte v)
Adds a pair to the map.
|
Byte |
put(Double ok,
Byte ov)
Delegates to the corresponding type-specific method, taking care of returning
null on a missing key. |
void |
putAll(Map<? extends Double,? extends Byte> m)
Puts all pairs in the given map.
|
boolean |
rehash()
Deprecated.
A no-op.
|
byte |
remove(double k)
Removes the mapping with the given key.
|
Byte |
remove(Object ok)
Delegates to the corresponding type-specific method, taking care of returning
null on a missing key. |
int |
size()
Returns the intended number of keys in this function, or -1 if no such number exists.
|
DoubleHash.Strategy |
strategy()
Returns the hashing strategy.
|
boolean |
trim()
Rehashes the map, making the table as small as possible.
|
boolean |
trim(int n)
Rehashes this map if the table is too large.
|
ByteCollection |
values()
Returns a type-specific-set view of the values of this map.
|
containsValue, entrySet, equals, toString
containsKey, defaultReturnValue, defaultReturnValue, get
defaultReturnValue, defaultReturnValue
containsKey, get
containsKey, get
public Double2ByteOpenCustomHashMap(int expected, float f, DoubleHash.Strategy strategy)
The actual table size will be the least power of two greater than expected
/f
.
expected
- the expected number of elements in the hash set.f
- the load factor.strategy
- the strategy.public Double2ByteOpenCustomHashMap(int expected, DoubleHash.Strategy strategy)
Hash.DEFAULT_LOAD_FACTOR
as load factor.expected
- the expected number of elements in the hash map.strategy
- the strategy.public Double2ByteOpenCustomHashMap(DoubleHash.Strategy strategy)
Hash.DEFAULT_INITIAL_SIZE
entries
and Hash.DEFAULT_LOAD_FACTOR
as load factor.strategy
- the strategy.public Double2ByteOpenCustomHashMap(Map<? extends Double,? extends Byte> m, float f, DoubleHash.Strategy strategy)
m
- a Map
to be copied into the new hash map.f
- the load factor.strategy
- the strategy.public Double2ByteOpenCustomHashMap(Map<? extends Double,? extends Byte> m, DoubleHash.Strategy strategy)
Hash.DEFAULT_LOAD_FACTOR
as load factor copying a given one.m
- a Map
to be copied into the new hash map.strategy
- the strategy.public Double2ByteOpenCustomHashMap(Double2ByteMap m, float f, DoubleHash.Strategy strategy)
m
- a type-specific map to be copied into the new hash map.f
- the load factor.strategy
- the strategy.public Double2ByteOpenCustomHashMap(Double2ByteMap m, DoubleHash.Strategy strategy)
Hash.DEFAULT_LOAD_FACTOR
as load factor copying a given type-specific one.m
- a type-specific map to be copied into the new hash map.strategy
- the strategy.public Double2ByteOpenCustomHashMap(double[] k, byte[] v, float f, DoubleHash.Strategy strategy)
k
- the array of keys of the new hash map.v
- the array of corresponding values in the new hash map.f
- the load factor.strategy
- the strategy.IllegalArgumentException
- if k
and v
have different lengths.public Double2ByteOpenCustomHashMap(double[] k, byte[] v, DoubleHash.Strategy strategy)
Hash.DEFAULT_LOAD_FACTOR
as load factor using the elements of two parallel arrays.k
- the array of keys of the new hash map.v
- the array of corresponding values in the new hash map.strategy
- the strategy.IllegalArgumentException
- if k
and v
have different lengths.public DoubleHash.Strategy strategy()
public void putAll(Map<? extends Double,? extends Byte> m)
public byte put(double k, byte v)
Double2ByteFunction
put
in interface Double2ByteFunction
put
in class AbstractDouble2ByteFunction
k
- the key.v
- the value.Function.put(Object,Object)
public Byte put(Double ok, Byte ov)
AbstractDouble2ByteFunction
null
on a missing key.
This method must check whether the provided key is in the map using containsKey()
. Thus,
it probes the map twice. Implementors of subclasses should override it with a more efficient method.
public byte addTo(double k, byte incr)
Note that this method respects the default return value semantics: when called with a key that does not currently appears in the map, the key will be associated with the default return value plus the given increment.
k
- the key.incr
- the increment.public byte remove(double k)
Double2ByteFunction
remove
in interface Double2ByteFunction
remove
in class AbstractDouble2ByteFunction
k
- the key.Function.remove(Object)
public Byte remove(Object ok)
AbstractDouble2ByteFunction
null
on a missing key.
This method must check whether the provided key is in the map using containsKey()
. Thus,
it probes the map twice. Implementors of subclasses should override it with a more efficient method.
public byte get(double k)
Double2ByteFunction
get
in interface Double2ByteFunction
k
- the key.Function.get(Object)
public boolean containsKey(double k)
AbstractDouble2ByteMap
AbstractDouble2ByteMap.keySet()
.containsKey
in interface Double2ByteFunction
containsKey
in class AbstractDouble2ByteMap
Function.containsKey(Object)
public boolean containsValue(byte v)
AbstractDouble2ByteMap
AbstractDouble2ByteMap.values()
.containsValue
in interface Double2ByteMap
containsValue
in class AbstractDouble2ByteMap
Map.containsValue(Object)
public void clear()
Function
public int size()
Function
Most function implementations will have some knowledge of the intended number of keys in their domain. In some cases, however, this might not be possible.
public boolean isEmpty()
@Deprecated public void growthFactor(int growthFactor)
fastutil
6.1.0, hash tables are doubled when they are too full.growthFactor
- unused.@Deprecated public int growthFactor()
fastutil
6.1.0, hash tables are doubled when they are too full.growthFactor(int)
public Double2ByteMap.FastEntrySet double2ByteEntrySet()
Double2ByteMap
This method is necessary because there is no inheritance along
type parameters: it is thus impossible to strengthen Double2ByteMap.entrySet()
so that it returns an ObjectSet
of objects of type Map.Entry
(the latter makes it possible to
access keys and values with type-specific methods).
double2ByteEntrySet
in interface Double2ByteMap
Double2ByteMap.entrySet()
public DoubleSet keySet()
AbstractDouble2ByteMap
The view is backed by the set returned by AbstractDouble2ByteMap.entrySet()
. Note that
no attempt is made at caching the result of this method, as this would
require adding some attributes that lightweight implementations would
not need. Subclasses may easily override this policy by calling
this method and caching the result, but implementors are encouraged to
write more efficient ad-hoc implementations.
keySet
in interface Double2ByteMap
keySet
in interface Map<Double,Byte>
keySet
in class AbstractDouble2ByteMap
Map.keySet()
public ByteCollection values()
AbstractDouble2ByteMap
The view is backed by the set returned by AbstractDouble2ByteMap.entrySet()
. Note that
no attempt is made at caching the result of this method, as this would
require adding some attributes that lightweight implementations would
not need. Subclasses may easily override this policy by calling
this method and caching the result, but implementors are encouraged to
write more efficient ad-hoc implementations.
values
in interface Double2ByteMap
values
in interface Map<Double,Byte>
values
in class AbstractDouble2ByteMap
Map.values()
@Deprecated public boolean rehash()
If you need to reduce the table size to fit exactly
this set, use trim()
.
trim()
public boolean trim()
This method rehashes the table to the smallest size satisfying the load factor. It can be used when the set will not be changed anymore, so to optimize access speed and size.
If the table size is already the minimum possible, this method does nothing.
trim(int)
public boolean trim(int n)
Let N be the smallest table size that can hold
max(n,
entries, still satisfying the load factor. If the current
table size is smaller than or equal to N, this method does
nothing. Otherwise, it rehashes this map in a table of size
N.
size()
)
This method is useful when reusing maps. Clearing a map leaves the table size untouched. If you are reusing a map many times, you can call this method with a typical size to avoid keeping around a very large table just because of a few large transient maps.
n
- the threshold for the trimming.trim()
public Double2ByteOpenCustomHashMap clone()
This method performs a deep copy of this hash map; the data stored in the map, however, is not cloned. Note that this makes a difference only for object keys.
public int hashCode()
equals()
is not overriden, it is important
that the value returned by this method is the same value as
the one returned by the overriden method.