public class Long2DoubleOpenHashMap extends AbstractLong2DoubleMap implements Serializable, Cloneable, Hash
Instances of this class use a hash table to represent a map. The table is filled up to a specified load factor, and then doubled in size to accommodate new entries. If the table is emptied below one fourth of the load factor, it is halved in size. However, halving is not performed when deleting entries from an iterator, as it would interfere with the iteration process.
Note that clear()
does not modify the hash table size.
Rather, a family of trimming
methods lets you control the size of the table; this is particularly useful
if you reuse instances of this class.
Hash
,
HashCommon
,
Serialized FormAbstractLong2DoubleMap.BasicEntry
Hash.Strategy<K>
Long2DoubleMap.Entry, Long2DoubleMap.FastEntrySet
DEFAULT_GROWTH_FACTOR, DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR, FAST_LOAD_FACTOR, FREE, OCCUPIED, PRIMES, REMOVED, VERY_FAST_LOAD_FACTOR
Constructor and Description |
---|
Long2DoubleOpenHashMap()
Creates a new hash map with initial expected
Hash.DEFAULT_INITIAL_SIZE entries
and Hash.DEFAULT_LOAD_FACTOR as load factor. |
Long2DoubleOpenHashMap(int expected)
Creates a new hash map with
Hash.DEFAULT_LOAD_FACTOR as load factor. |
Long2DoubleOpenHashMap(int expected,
float f)
Creates a new hash map.
|
Long2DoubleOpenHashMap(long[] k,
double[] v)
Creates a new hash map with
Hash.DEFAULT_LOAD_FACTOR as load factor using the elements of two parallel arrays. |
Long2DoubleOpenHashMap(long[] k,
double[] v,
float f)
Creates a new hash map using the elements of two parallel arrays.
|
Long2DoubleOpenHashMap(Long2DoubleMap m)
Creates a new hash map with
Hash.DEFAULT_LOAD_FACTOR as load factor copying a given type-specific one. |
Long2DoubleOpenHashMap(Long2DoubleMap m,
float f)
Creates a new hash map copying a given type-specific one.
|
Long2DoubleOpenHashMap(Map<? extends Long,? extends Double> m)
Creates a new hash map with
Hash.DEFAULT_LOAD_FACTOR as load factor copying a given one. |
Long2DoubleOpenHashMap(Map<? extends Long,? extends Double> m,
float f)
Creates a new hash map copying a given one.
|
Modifier and Type | Method and Description |
---|---|
double |
addTo(long k,
double incr)
Adds an increment to value currently associated with a key.
|
void |
clear()
Removes all associations from this function (optional operation).
|
Long2DoubleOpenHashMap |
clone()
Returns a deep copy of this map.
|
boolean |
containsKey(long k)
Checks whether the given value is contained in
AbstractLong2DoubleMap.keySet() . |
boolean |
containsValue(double v)
Checks whether the given value is contained in
AbstractLong2DoubleMap.values() . |
double |
get(long k)
Returns the value to which the given key is mapped.
|
Double |
get(Long ok) |
int |
growthFactor()
Deprecated.
Since
fastutil 6.1.0, hash tables are doubled when they are too full. |
void |
growthFactor(int growthFactor)
Deprecated.
Since
fastutil 6.1.0, hash tables are doubled when they are too full. |
int |
hashCode()
Returns a hash code for this map.
|
boolean |
isEmpty() |
LongSet |
keySet()
Returns a type-specific-set view of the keys of this map.
|
Long2DoubleMap.FastEntrySet |
long2DoubleEntrySet()
Returns a type-specific set view of the mappings contained in this map.
|
double |
put(long k,
double v)
Adds a pair to the map.
|
Double |
put(Long ok,
Double ov)
Delegates to the corresponding type-specific method, taking care of returning
null on a missing key. |
void |
putAll(Map<? extends Long,? extends Double> m)
Puts all pairs in the given map.
|
boolean |
rehash()
Deprecated.
A no-op.
|
double |
remove(long k)
Removes the mapping with the given key.
|
Double |
remove(Object ok)
Delegates to the corresponding type-specific method, taking care of returning
null on a missing key. |
int |
size()
Returns the intended number of keys in this function, or -1 if no such number exists.
|
boolean |
trim()
Rehashes the map, making the table as small as possible.
|
boolean |
trim(int n)
Rehashes this map if the table is too large.
|
DoubleCollection |
values()
Returns a type-specific-set view of the values of this map.
|
containsValue, entrySet, equals, toString
containsKey, defaultReturnValue, defaultReturnValue, get
defaultReturnValue, defaultReturnValue
containsKey, get
containsKey, get
public Long2DoubleOpenHashMap(int expected, float f)
The actual table size will be the least power of two greater than expected
/f
.
expected
- the expected number of elements in the hash set.f
- the load factor.public Long2DoubleOpenHashMap(int expected)
Hash.DEFAULT_LOAD_FACTOR
as load factor.expected
- the expected number of elements in the hash map.public Long2DoubleOpenHashMap()
Hash.DEFAULT_INITIAL_SIZE
entries
and Hash.DEFAULT_LOAD_FACTOR
as load factor.public Long2DoubleOpenHashMap(Map<? extends Long,? extends Double> m, float f)
m
- a Map
to be copied into the new hash map.f
- the load factor.public Long2DoubleOpenHashMap(Map<? extends Long,? extends Double> m)
Hash.DEFAULT_LOAD_FACTOR
as load factor copying a given one.m
- a Map
to be copied into the new hash map.public Long2DoubleOpenHashMap(Long2DoubleMap m, float f)
m
- a type-specific map to be copied into the new hash map.f
- the load factor.public Long2DoubleOpenHashMap(Long2DoubleMap m)
Hash.DEFAULT_LOAD_FACTOR
as load factor copying a given type-specific one.m
- a type-specific map to be copied into the new hash map.public Long2DoubleOpenHashMap(long[] k, double[] v, float f)
k
- the array of keys of the new hash map.v
- the array of corresponding values in the new hash map.f
- the load factor.IllegalArgumentException
- if k
and v
have different lengths.public Long2DoubleOpenHashMap(long[] k, double[] v)
Hash.DEFAULT_LOAD_FACTOR
as load factor using the elements of two parallel arrays.k
- the array of keys of the new hash map.v
- the array of corresponding values in the new hash map.IllegalArgumentException
- if k
and v
have different lengths.public void putAll(Map<? extends Long,? extends Double> m)
public double put(long k, double v)
Long2DoubleFunction
put
in interface Long2DoubleFunction
put
in class AbstractLong2DoubleFunction
k
- the key.v
- the value.Function.put(Object,Object)
public Double put(Long ok, Double ov)
AbstractLong2DoubleFunction
null
on a missing key.
This method must check whether the provided key is in the map using containsKey()
. Thus,
it probes the map twice. Implementors of subclasses should override it with a more efficient method.
public double addTo(long k, double incr)
Note that this method respects the default return value semantics: when called with a key that does not currently appears in the map, the key will be associated with the default return value plus the given increment.
k
- the key.incr
- the increment.public double remove(long k)
Long2DoubleFunction
remove
in interface Long2DoubleFunction
remove
in class AbstractLong2DoubleFunction
k
- the key.Function.remove(Object)
public Double remove(Object ok)
AbstractLong2DoubleFunction
null
on a missing key.
This method must check whether the provided key is in the map using containsKey()
. Thus,
it probes the map twice. Implementors of subclasses should override it with a more efficient method.
public double get(long k)
Long2DoubleFunction
get
in interface Long2DoubleFunction
k
- the key.Function.get(Object)
public boolean containsKey(long k)
AbstractLong2DoubleMap
AbstractLong2DoubleMap.keySet()
.containsKey
in interface Long2DoubleFunction
containsKey
in class AbstractLong2DoubleMap
Function.containsKey(Object)
public boolean containsValue(double v)
AbstractLong2DoubleMap
AbstractLong2DoubleMap.values()
.containsValue
in interface Long2DoubleMap
containsValue
in class AbstractLong2DoubleMap
Map.containsValue(Object)
public void clear()
Function
public int size()
Function
Most function implementations will have some knowledge of the intended number of keys in their domain. In some cases, however, this might not be possible.
public boolean isEmpty()
@Deprecated public void growthFactor(int growthFactor)
fastutil
6.1.0, hash tables are doubled when they are too full.growthFactor
- unused.@Deprecated public int growthFactor()
fastutil
6.1.0, hash tables are doubled when they are too full.growthFactor(int)
public Long2DoubleMap.FastEntrySet long2DoubleEntrySet()
Long2DoubleMap
This method is necessary because there is no inheritance along
type parameters: it is thus impossible to strengthen Long2DoubleMap.entrySet()
so that it returns an ObjectSet
of objects of type Map.Entry
(the latter makes it possible to
access keys and values with type-specific methods).
long2DoubleEntrySet
in interface Long2DoubleMap
Long2DoubleMap.entrySet()
public LongSet keySet()
AbstractLong2DoubleMap
The view is backed by the set returned by AbstractLong2DoubleMap.entrySet()
. Note that
no attempt is made at caching the result of this method, as this would
require adding some attributes that lightweight implementations would
not need. Subclasses may easily override this policy by calling
this method and caching the result, but implementors are encouraged to
write more efficient ad-hoc implementations.
keySet
in interface Long2DoubleMap
keySet
in interface Map<Long,Double>
keySet
in class AbstractLong2DoubleMap
Map.keySet()
public DoubleCollection values()
AbstractLong2DoubleMap
The view is backed by the set returned by AbstractLong2DoubleMap.entrySet()
. Note that
no attempt is made at caching the result of this method, as this would
require adding some attributes that lightweight implementations would
not need. Subclasses may easily override this policy by calling
this method and caching the result, but implementors are encouraged to
write more efficient ad-hoc implementations.
values
in interface Long2DoubleMap
values
in interface Map<Long,Double>
values
in class AbstractLong2DoubleMap
Map.values()
@Deprecated public boolean rehash()
If you need to reduce the table size to fit exactly
this set, use trim()
.
trim()
public boolean trim()
This method rehashes the table to the smallest size satisfying the load factor. It can be used when the set will not be changed anymore, so to optimize access speed and size.
If the table size is already the minimum possible, this method does nothing.
trim(int)
public boolean trim(int n)
Let N be the smallest table size that can hold
max(n,
entries, still satisfying the load factor. If the current
table size is smaller than or equal to N, this method does
nothing. Otherwise, it rehashes this map in a table of size
N.
size()
)
This method is useful when reusing maps. Clearing a map leaves the table size untouched. If you are reusing a map many times, you can call this method with a typical size to avoid keeping around a very large table just because of a few large transient maps.
n
- the threshold for the trimming.trim()
public Long2DoubleOpenHashMap clone()
This method performs a deep copy of this hash map; the data stored in the map, however, is not cloned. Note that this makes a difference only for object keys.
public int hashCode()
equals()
is not overriden, it is important
that the value returned by this method is the same value as
the one returned by the overriden method.