Class LowerSPDPackMatrix

All Implemented Interfaces:
Iterable<MatrixEntry>, Matrix

public class LowerSPDPackMatrix extends LowerSymmPackMatrix
Lower symmetrical positive definite packed matrix. Same layout as LowerSymmPackMatrix. This class does not enforce the SPD property, but serves as a tag so that more efficient algorithms can be used in the solvers.
  • Constructor Details

    • LowerSPDPackMatrix

      public LowerSPDPackMatrix(int n)
      Constructor for LowerSPDPackMatrix
      Parameters:
      n - Size of the matrix. Since the matrix must be square, this equals both the number of rows and columns
    • LowerSPDPackMatrix

      public LowerSPDPackMatrix(Matrix A)
      Constructor for LowerSPDPackMatrix
      Parameters:
      A - Matrix to copy contents from. Only the entries of the relevant part are copied
    • LowerSPDPackMatrix

      public LowerSPDPackMatrix(Matrix A, boolean deep)
      Constructor for LowerSPDPackMatrix
      Parameters:
      A - Matrix to copy contents from. Only the entries of the relevant part are copied
      deep - True if the copy is deep, else false (giving a shallow copy). For shallow copies, A must be a packed matrix
  • Method Details

    • copy

      public LowerSPDPackMatrix copy()
      Description copied from interface: Matrix
      Creates a deep copy of the matrix
      Specified by:
      copy in interface Matrix
      Overrides:
      copy in class LowerSymmPackMatrix
      Returns:
      A
    • solve

      public Matrix solve(Matrix B, Matrix X)
      Description copied from interface: Matrix
      X = A\B. Not all matrices support this operation, those that do not throw UnsupportedOperationException. Note that it is often more efficient to use a matrix decomposition and its associated solver
      Specified by:
      solve in interface Matrix
      Parameters:
      B - Matrix with the same number of rows as A, and the same number of columns as X
      X - Matrix with a number of rows equal A.numColumns(), and the same number of columns as B
      Returns:
      X
    • multAdd

      public Vector multAdd(double alpha, Vector x, Vector y)
      Description copied from interface: Matrix
      y = alpha*A*x + y
      Specified by:
      multAdd in interface Matrix
      Overrides:
      multAdd in class AbstractMatrix
      Parameters:
      x - Vector of size A.numColumns()
      y - Vector of size A.numRows()
      Returns:
      y
    • transMultAdd

      public Vector transMultAdd(double alpha, Vector x, Vector y)
      Description copied from interface: Matrix
      y = alpha*AT*x + y
      Specified by:
      transMultAdd in interface Matrix
      Overrides:
      transMultAdd in class AbstractMatrix
      Parameters:
      x - Vector of size A.numRows()
      y - Vector of size A.numColumns()
      Returns:
      y
    • rank1

      public Matrix rank1(double alpha, Vector x, Vector y)
      Description copied from interface: Matrix
      A = alpha*x*yT + A. The matrix must be square, and the vectors of the same length
      Specified by:
      rank1 in interface Matrix
      Overrides:
      rank1 in class AbstractMatrix
      Returns:
      A
    • rank2

      public Matrix rank2(double alpha, Vector x, Vector y)
      Description copied from interface: Matrix
      A = alpha*x*yT + alpha*y*xT + A. The matrix must be square, and the vectors of the same length
      Specified by:
      rank2 in interface Matrix
      Overrides:
      rank2 in class AbstractMatrix
      Returns:
      A
    • solve

      public Vector solve(Vector b, Vector x)
      Description copied from interface: Matrix
      x = A\b. Not all matrices support this operation, those that do not throw UnsupportedOperationException. Note that it is often more efficient to use a matrix decomposition and its associated solver
      Specified by:
      solve in interface Matrix
      Overrides:
      solve in class AbstractMatrix
      Parameters:
      b - Vector of size A.numRows()
      x - Vector of size A.numColumns()
      Returns:
      x
    • transSolve

      public Matrix transSolve(Matrix B, Matrix X)
      Description copied from interface: Matrix
      X = AT\B. Not all matrices support this operation, those that do not throw UnsupportedOperationException. Note that it is often more efficient to use a matrix decomposition and its associated transpose solver
      Specified by:
      transSolve in interface Matrix
      Overrides:
      transSolve in class AbstractMatrix
      Parameters:
      B - Matrix with a number of rows equal A.numColumns(), and the same number of columns as X
      X - Matrix with the same number of rows as A, and the same number of columns as B
      Returns:
      X
    • transSolve

      public Vector transSolve(Vector b, Vector x)
      Description copied from interface: Matrix
      x = AT\b. Not all matrices support this operation, those that do not throw UnsupportedOperationException. Note that it is often more efficient to use a matrix decomposition and its associated solver
      Specified by:
      transSolve in interface Matrix
      Overrides:
      transSolve in class AbstractMatrix
      Parameters:
      b - Vector of size A.numColumns()
      x - Vector of size A.numRows()
      Returns:
      x
    • transpose

      public Matrix transpose()
      Description copied from interface: Matrix
      Transposes the matrix in-place. In most cases, the matrix must be square for this to work.
      Specified by:
      transpose in interface Matrix
      Overrides:
      transpose in class AbstractMatrix
      Returns:
      This matrix
    • getData

      public double[] getData()
      Returns the matrix contents. Ordering depends on the underlying storage assumptions
    • set

      public Matrix set(Matrix B)
      Description copied from interface: Matrix
      A=B. The matrices must be of the same size
      Specified by:
      set in interface Matrix
      Overrides:
      set in class AbstractMatrix
      Returns:
      A
    • zero

      public Matrix zero()
      Description copied from interface: Matrix
      Zeros all the entries in the matrix, while preserving any underlying structure. Useful for general, unstructured matrices.
      Specified by:
      zero in interface Matrix
      Overrides:
      zero in class AbstractMatrix
      Returns:
      A