43 #ifndef OPENVDB_TOOLS_MESH_TO_VOLUME_HAS_BEEN_INCLUDED
44 #define OPENVDB_TOOLS_MESH_TO_VOLUME_HAS_BEEN_INCLUDED
57 #include <tbb/blocked_range.h>
58 #include <tbb/enumerable_thread_specific.h>
59 #include <tbb/parallel_for.h>
60 #include <tbb/parallel_reduce.h>
61 #include <tbb/partitioner.h>
62 #include <tbb/task_group.h>
63 #include <tbb/task_scheduler_init.h>
65 #include <boost/mpl/at.hpp>
66 #include <boost/mpl/int.hpp>
67 #include <boost/mpl/size.hpp>
75 #include <type_traits>
140 template <
typename Gr
idType,
typename MeshDataAdapter>
141 inline typename GridType::Ptr
145 float exteriorBandWidth = 3.0f,
146 float interiorBandWidth = 3.0f,
166 template <
typename Gr
idType,
typename MeshDataAdapter,
typename Interrupter>
167 inline typename GridType::Ptr
169 Interrupter& interrupter,
172 float exteriorBandWidth = 3.0f,
173 float interiorBandWidth = 3.0f,
191 template<
typename Po
intType,
typename PolygonType>
195 const std::vector<PolygonType>& polygons)
196 : mPointArray(points.empty() ? nullptr : &points[0])
197 , mPointArraySize(points.size())
198 , mPolygonArray(polygons.empty() ? nullptr : &polygons[0])
199 , mPolygonArraySize(polygons.size())
204 const PolygonType* polygonArray,
size_t polygonArraySize)
205 : mPointArray(pointArray)
206 , mPointArraySize(pointArraySize)
207 , mPolygonArray(polygonArray)
208 , mPolygonArraySize(polygonArraySize)
217 return (PolygonType::size == 3 || mPolygonArray[n][3] ==
util::INVALID_IDX) ? 3 : 4;
223 const PointType& p = mPointArray[mPolygonArray[n][int(v)]];
224 pos[0] = double(p[0]);
225 pos[1] = double(p[1]);
226 pos[2] = double(p[2]);
230 PointType
const *
const mPointArray;
231 size_t const mPointArraySize;
232 PolygonType
const *
const mPolygonArray;
233 size_t const mPolygonArraySize;
261 template<
typename Gr
idType>
262 inline typename GridType::Ptr
264 const openvdb::math::Transform& xform,
265 const std::vector<Vec3s>& points,
266 const std::vector<Vec3I>& triangles,
270 template<
typename Gr
idType,
typename Interrupter>
271 inline typename GridType::Ptr
273 Interrupter& interrupter,
274 const openvdb::math::Transform& xform,
275 const std::vector<Vec3s>& points,
276 const std::vector<Vec3I>& triangles,
295 template<
typename Gr
idType>
296 inline typename GridType::Ptr
298 const openvdb::math::Transform& xform,
299 const std::vector<Vec3s>& points,
300 const std::vector<Vec4I>& quads,
304 template<
typename Gr
idType,
typename Interrupter>
305 inline typename GridType::Ptr
307 Interrupter& interrupter,
308 const openvdb::math::Transform& xform,
309 const std::vector<Vec3s>& points,
310 const std::vector<Vec4I>& quads,
330 template<
typename Gr
idType>
331 inline typename GridType::Ptr
333 const openvdb::math::Transform& xform,
334 const std::vector<Vec3s>& points,
335 const std::vector<Vec3I>& triangles,
336 const std::vector<Vec4I>& quads,
340 template<
typename Gr
idType,
typename Interrupter>
341 inline typename GridType::Ptr
343 Interrupter& interrupter,
344 const openvdb::math::Transform& xform,
345 const std::vector<Vec3s>& points,
346 const std::vector<Vec3I>& triangles,
347 const std::vector<Vec4I>& quads,
369 template<
typename Gr
idType>
370 inline typename GridType::Ptr
372 const openvdb::math::Transform& xform,
373 const std::vector<Vec3s>& points,
374 const std::vector<Vec3I>& triangles,
375 const std::vector<Vec4I>& quads,
380 template<
typename Gr
idType,
typename Interrupter>
381 inline typename GridType::Ptr
383 Interrupter& interrupter,
384 const openvdb::math::Transform& xform,
385 const std::vector<Vec3s>& points,
386 const std::vector<Vec3I>& triangles,
387 const std::vector<Vec4I>& quads,
406 template<
typename Gr
idType>
407 inline typename GridType::Ptr
409 const openvdb::math::Transform& xform,
410 const std::vector<Vec3s>& points,
411 const std::vector<Vec3I>& triangles,
412 const std::vector<Vec4I>& quads,
416 template<
typename Gr
idType,
typename Interrupter>
417 inline typename GridType::Ptr
419 Interrupter& interrupter,
420 const openvdb::math::Transform& xform,
421 const std::vector<Vec3s>& points,
422 const std::vector<Vec3I>& triangles,
423 const std::vector<Vec4I>& quads,
436 template<
typename Gr
idType,
typename VecType>
437 inline typename GridType::Ptr
439 const openvdb::math::Transform& xform,
452 template <
typename FloatTreeT>
470 : mXDist(dist), mYDist(dist), mZDist(dist)
513 void convert(
const std::vector<Vec3s>& pointList,
const std::vector<Vec4I>& polygonList);
519 std::vector<Vec3d>& points, std::vector<Index32>& primitives);
538 namespace mesh_to_volume_internal {
540 template<
typename Po
intType>
545 : mPointsIn(pointsIn), mPointsOut(pointsOut), mXform(&xform)
549 void operator()(
const tbb::blocked_range<size_t>& range)
const {
553 for (
size_t n = range.begin(), N = range.end(); n < N; ++n) {
555 const PointType& wsP = mPointsIn[n];
556 pos[0] = double(wsP[0]);
557 pos[1] = double(wsP[1]);
558 pos[2] = double(wsP[2]);
560 pos = mXform->worldToIndex(pos);
562 PointType& isP = mPointsOut[n];
563 isP[0] =
typename PointType::value_type(pos[0]);
564 isP[1] =
typename PointType::value_type(pos[1]);
565 isP[2] =
typename PointType::value_type(pos[2]);
575 template<
typename ValueType>
578 static ValueType
epsilon() {
return ValueType(1e-7); }
586 template<
typename TreeType>
598 : mDistTree(&lhsDistTree)
599 , mIdxTree(&lhsIdxTree)
600 , mRhsDistNodes(rhsDistNodes)
601 , mRhsIdxNodes(rhsIdxNodes)
605 void operator()(
const tbb::blocked_range<size_t>& range)
const {
610 using DistValueType =
typename LeafNodeType::ValueType;
611 using IndexValueType =
typename Int32LeafNodeType::ValueType;
613 for (
size_t n = range.begin(), N = range.end(); n < N; ++n) {
615 const Coord& origin = mRhsDistNodes[n]->origin();
620 DistValueType* lhsDistData = lhsDistNode->buffer().data();
621 IndexValueType* lhsIdxData = lhsIdxNode->buffer().data();
623 const DistValueType* rhsDistData = mRhsDistNodes[n]->buffer().data();
624 const IndexValueType* rhsIdxData = mRhsIdxNodes[n]->buffer().data();
627 for (
Index32 offset = 0; offset < LeafNodeType::SIZE; ++offset) {
631 const DistValueType& lhsValue = lhsDistData[offset];
632 const DistValueType& rhsValue = rhsDistData[offset];
634 if (rhsValue < lhsValue) {
635 lhsDistNode->setValueOn(offset, rhsValue);
636 lhsIdxNode->setValueOn(offset, rhsIdxData[offset]);
638 lhsIdxNode->setValueOn(offset,
639 std::min(lhsIdxData[offset], rhsIdxData[offset]));
644 delete mRhsDistNodes[n];
645 delete mRhsIdxNodes[n];
651 TreeType *
const mDistTree;
652 Int32TreeType *
const mIdxTree;
654 LeafNodeType **
const mRhsDistNodes;
655 Int32LeafNodeType **
const mRhsIdxNodes;
662 template<
typename TreeType>
668 : mNodes(nodes.empty() ? nullptr : &nodes[0]), mCoordinates(coordinates)
672 void operator()(
const tbb::blocked_range<size_t>& range)
const {
673 for (
size_t n = range.begin(), N = range.end(); n < N; ++n) {
674 Coord& origin =
const_cast<Coord&
>(mNodes[n]->origin());
675 mCoordinates[n] = origin;
676 origin[0] =
static_cast<int>(n);
685 template<
typename TreeType>
691 : mNodes(nodes.empty() ? nullptr : &nodes[0]), mCoordinates(coordinates)
695 void operator()(
const tbb::blocked_range<size_t>& range)
const {
696 for (
size_t n = range.begin(), N = range.end(); n < N; ++n) {
697 Coord& origin =
const_cast<Coord&
>(mNodes[n]->origin());
698 origin[0] = mCoordinates[n][0];
707 template<
typename TreeType>
714 size_t* offsets,
size_t numNodes,
const CoordBBox& bbox)
716 , mCoordinates(coordinates)
718 , mNumNodes(numNodes)
728 void operator()(
const tbb::blocked_range<size_t>& range)
const {
730 size_t* offsetsNextX = mOffsets;
731 size_t* offsetsPrevX = mOffsets + mNumNodes;
732 size_t* offsetsNextY = mOffsets + mNumNodes * 2;
733 size_t* offsetsPrevY = mOffsets + mNumNodes * 3;
734 size_t* offsetsNextZ = mOffsets + mNumNodes * 4;
735 size_t* offsetsPrevZ = mOffsets + mNumNodes * 5;
740 for (
size_t n = range.begin(), N = range.end(); n < N; ++n) {
741 const Coord& origin = mCoordinates[n];
742 offsetsNextX[n] = findNeighbourNode(acc, origin,
Coord(LeafNodeType::DIM, 0, 0));
743 offsetsPrevX[n] = findNeighbourNode(acc, origin,
Coord(-LeafNodeType::DIM, 0, 0));
744 offsetsNextY[n] = findNeighbourNode(acc, origin,
Coord(0, LeafNodeType::DIM, 0));
745 offsetsPrevY[n] = findNeighbourNode(acc, origin,
Coord(0, -LeafNodeType::DIM, 0));
746 offsetsNextZ[n] = findNeighbourNode(acc, origin,
Coord(0, 0, LeafNodeType::DIM));
747 offsetsPrevZ[n] = findNeighbourNode(acc, origin,
Coord(0, 0, -LeafNodeType::DIM));
754 Coord ijk = start + step;
759 if (node)
return static_cast<size_t>(node->origin()[0]);
768 TreeType
const *
const mTree;
769 Coord const *
const mCoordinates;
770 size_t *
const mOffsets;
772 const size_t mNumNodes;
777 template<
typename TreeType>
786 mLeafNodes.reserve(tree.leafCount());
787 tree.getNodes(mLeafNodes);
789 if (mLeafNodes.empty())
return;
792 tree.evalLeafBoundingBox(bbox);
794 const tbb::blocked_range<size_t> range(0, mLeafNodes.size());
798 std::unique_ptr<Coord[]> coordinates{
new Coord[mLeafNodes.size()]};
799 tbb::parallel_for(range,
803 mOffsets.reset(
new size_t[mLeafNodes.size() * 6]);
807 tree, coordinates.get(), mOffsets.get(), mLeafNodes.size(), bbox));
813 size_t size()
const {
return mLeafNodes.size(); }
815 std::vector<LeafNodeType*>&
nodes() {
return mLeafNodes; }
816 const std::vector<LeafNodeType*>&
nodes()
const {
return mLeafNodes; }
820 const size_t*
offsetsPrevX()
const {
return mOffsets.get() + mLeafNodes.size(); }
822 const size_t*
offsetsNextY()
const {
return mOffsets.get() + mLeafNodes.size() * 2; }
823 const size_t*
offsetsPrevY()
const {
return mOffsets.get() + mLeafNodes.size() * 3; }
825 const size_t*
offsetsNextZ()
const {
return mOffsets.get() + mLeafNodes.size() * 4; }
826 const size_t*
offsetsPrevZ()
const {
return mOffsets.get() + mLeafNodes.size() * 5; }
829 std::vector<LeafNodeType*> mLeafNodes;
830 std::unique_ptr<size_t[]> mOffsets;
834 template<
typename TreeType>
847 : mStartNodeIndices(startNodeIndices.empty() ? nullptr : &startNodeIndices[0])
848 , mConnectivity(&connectivity)
853 void operator()(
const tbb::blocked_range<size_t>& range)
const {
855 std::vector<LeafNodeType*>& nodes = mConnectivity->nodes();
858 size_t idxA = 0, idxB = 1;
861 const size_t* nextOffsets = mConnectivity->offsetsNextZ();
862 const size_t* prevOffsets = mConnectivity->offsetsPrevZ();
868 step = LeafNodeType::DIM;
870 nextOffsets = mConnectivity->offsetsNextY();
871 prevOffsets = mConnectivity->offsetsPrevY();
873 }
else if (mAxis ==
X_AXIS) {
877 step = LeafNodeType::DIM * LeafNodeType::DIM;
879 nextOffsets = mConnectivity->offsetsNextX();
880 prevOffsets = mConnectivity->offsetsPrevX();
888 for (
size_t n = range.begin(), N = range.end(); n < N; ++n) {
890 size_t startOffset = mStartNodeIndices[n];
891 size_t lastOffset = startOffset;
895 for (a = 0; a < int(LeafNodeType::DIM); ++a) {
896 for (b = 0; b < int(LeafNodeType::DIM); ++b) {
898 pos = LeafNodeType::coordToOffset(ijk);
899 size_t offset = startOffset;
902 while ( offset != ConnectivityTable::INVALID_OFFSET &&
903 traceVoxelLine(*nodes[offset], pos, step) ) {
906 offset = nextOffsets[offset];
911 while (offset != ConnectivityTable::INVALID_OFFSET) {
913 offset = nextOffsets[offset];
918 pos += step * (LeafNodeType::DIM - 1);
919 while ( offset != ConnectivityTable::INVALID_OFFSET &&
920 traceVoxelLine(*nodes[offset], pos, -step)) {
921 offset = prevOffsets[offset];
933 bool isOutside =
true;
935 for (
Index i = 0; i < LeafNodeType::DIM; ++i) {
943 if (!(dist >
ValueType(0.75))) isOutside =
false;
956 size_t const *
const mStartNodeIndices;
957 ConnectivityTable *
const mConnectivity;
963 template<
typename LeafNodeType>
967 using ValueType =
typename LeafNodeType::ValueType;
968 using Queue = std::deque<Index>;
971 ValueType* data = node.buffer().data();
975 for (
Index pos = 0; pos < LeafNodeType::SIZE; ++pos) {
976 if (data[pos] < 0.0) seedPoints.push_back(pos);
979 if (seedPoints.empty())
return;
982 for (Queue::iterator it = seedPoints.begin(); it != seedPoints.end(); ++it) {
983 ValueType& dist = data[*it];
990 Index pos(0), nextPos(0);
992 while (!seedPoints.empty()) {
994 pos = seedPoints.back();
995 seedPoints.pop_back();
997 ValueType& dist = data[pos];
999 if (!(dist < ValueType(0.0))) {
1003 ijk = LeafNodeType::offsetToLocalCoord(pos);
1006 nextPos = pos - LeafNodeType::DIM * LeafNodeType::DIM;
1007 if (data[nextPos] > ValueType(0.75)) seedPoints.push_back(nextPos);
1010 if (ijk[0] != (LeafNodeType::DIM - 1)) {
1011 nextPos = pos + LeafNodeType::DIM * LeafNodeType::DIM;
1012 if (data[nextPos] > ValueType(0.75)) seedPoints.push_back(nextPos);
1016 nextPos = pos - LeafNodeType::DIM;
1017 if (data[nextPos] > ValueType(0.75)) seedPoints.push_back(nextPos);
1020 if (ijk[1] != (LeafNodeType::DIM - 1)) {
1021 nextPos = pos + LeafNodeType::DIM;
1022 if (data[nextPos] > ValueType(0.75)) seedPoints.push_back(nextPos);
1027 if (data[nextPos] > ValueType(0.75)) seedPoints.push_back(nextPos);
1030 if (ijk[2] != (LeafNodeType::DIM - 1)) {
1032 if (data[nextPos] > ValueType(0.75)) seedPoints.push_back(nextPos);
1039 template<
typename LeafNodeType>
1043 bool updatedNode =
false;
1045 using ValueType =
typename LeafNodeType::ValueType;
1046 ValueType* data = node.buffer().data();
1050 bool updatedSign =
true;
1051 while (updatedSign) {
1053 updatedSign =
false;
1055 for (
Index pos = 0; pos < LeafNodeType::SIZE; ++pos) {
1057 ValueType& dist = data[pos];
1059 if (!(dist < ValueType(0.0)) && dist > ValueType(0.75)) {
1061 ijk = LeafNodeType::offsetToLocalCoord(pos);
1064 if (ijk[2] != 0 && data[pos - 1] < ValueType(0.0)) {
1066 dist = ValueType(-dist);
1069 }
else if (ijk[2] != (LeafNodeType::DIM - 1) && data[pos + 1] < ValueType(0.0)) {
1071 dist = ValueType(-dist);
1074 }
else if (ijk[1] != 0 && data[pos - LeafNodeType::DIM] < ValueType(0.0)) {
1076 dist = ValueType(-dist);
1079 }
else if (ijk[1] != (LeafNodeType::DIM - 1)
1080 && data[pos + LeafNodeType::DIM] < ValueType(0.0))
1083 dist = ValueType(-dist);
1086 }
else if (ijk[0] != 0
1087 && data[pos - LeafNodeType::DIM * LeafNodeType::DIM] < ValueType(0.0))
1090 dist = ValueType(-dist);
1093 }
else if (ijk[0] != (LeafNodeType::DIM - 1)
1094 && data[pos + LeafNodeType::DIM * LeafNodeType::DIM] < ValueType(0.0))
1097 dist = ValueType(-dist);
1102 updatedNode |= updatedSign;
1109 template<
typename TreeType>
1117 : mNodes(nodes.empty() ? nullptr : &nodes[0])
1118 , mChangedNodeMask(changedNodeMask)
1123 for (
size_t n = range.begin(), N = range.end(); n < N; ++n) {
1124 if (mChangedNodeMask[n]) {
1126 mChangedNodeMask[n] =
scanFill(*mNodes[n]);
1136 template<
typename ValueType>
1139 FillArray(ValueType* array,
const ValueType v) : mArray(array), mValue(v) { }
1142 const ValueType v = mValue;
1143 for (
size_t n = range.begin(), N = range.end(); n < N; ++n) {
1153 template<
typename ValueType>
1155 fillArray(ValueType* array,
const ValueType val,
const size_t length)
1157 const auto grainSize = std::max<size_t>(
1158 length / tbb::task_scheduler_init::default_num_threads(), 1024);
1159 const tbb::blocked_range<size_t> range(0, length, grainSize);
1164 template<
typename TreeType>
1172 const bool* changedNodeMask,
bool* changedVoxelMask)
1173 : mNodes(nodes.empty() ? nullptr : &nodes[0])
1174 , mChangedNodeMask(changedNodeMask)
1175 , mChangedVoxelMask(changedVoxelMask)
1180 for (
size_t n = range.begin(), N = range.end(); n < N; ++n) {
1182 if (mChangedNodeMask[n]) {
1183 bool* mask = &mChangedVoxelMask[n * LeafNodeType::SIZE];
1185 ValueType* data = mNodes[n]->buffer().data();
1187 for (
Index pos = 0; pos < LeafNodeType::SIZE; ++pos) {
1203 template<
typename TreeType>
1212 bool* changedNodeMask,
bool* nodeMask,
bool* changedVoxelMask)
1213 : mConnectivity(&connectivity)
1214 , mChangedNodeMask(changedNodeMask)
1215 , mNodeMask(nodeMask)
1216 , mChangedVoxelMask(changedVoxelMask)
1222 for (
size_t n = range.begin(), N = range.end(); n < N; ++n) {
1224 if (!mChangedNodeMask[n]) {
1226 bool changedValue =
false;
1228 changedValue |= processZ(n,
true);
1229 changedValue |= processZ(n,
false);
1231 changedValue |= processY(n,
true);
1232 changedValue |= processY(n,
false);
1234 changedValue |= processX(n,
true);
1235 changedValue |= processX(n,
false);
1237 mNodeMask[n] = changedValue;
1245 const size_t offset =
1246 firstFace ? mConnectivity->offsetsPrevZ()[n] : mConnectivity->offsetsNextZ()[n];
1247 if (offset != ConnectivityTable::INVALID_OFFSET && mChangedNodeMask[offset]) {
1249 bool* mask = &mChangedVoxelMask[n * LeafNodeType::SIZE];
1251 const ValueType* lhsData = mConnectivity->nodes()[n]->buffer().data();
1252 const ValueType* rhsData = mConnectivity->nodes()[offset]->buffer().data();
1254 const Index lastOffset = LeafNodeType::DIM - 1;
1255 const Index lhsOffset =
1256 firstFace ? 0 : lastOffset, rhsOffset = firstFace ? lastOffset : 0;
1258 Index tmpPos(0), pos(0);
1259 bool changedValue =
false;
1261 for (
Index x = 0; x < LeafNodeType::DIM; ++x) {
1262 tmpPos = x << (2 * LeafNodeType::LOG2DIM);
1263 for (
Index y = 0; y < LeafNodeType::DIM; ++y) {
1264 pos = tmpPos + (y << LeafNodeType::LOG2DIM);
1266 if (lhsData[pos + lhsOffset] >
ValueType(0.75)) {
1267 if (rhsData[pos + rhsOffset] <
ValueType(0.0)) {
1268 changedValue =
true;
1269 mask[pos + lhsOffset] =
true;
1275 return changedValue;
1283 const size_t offset =
1284 firstFace ? mConnectivity->offsetsPrevY()[n] : mConnectivity->offsetsNextY()[n];
1285 if (offset != ConnectivityTable::INVALID_OFFSET && mChangedNodeMask[offset]) {
1287 bool* mask = &mChangedVoxelMask[n * LeafNodeType::SIZE];
1289 const ValueType* lhsData = mConnectivity->nodes()[n]->buffer().data();
1290 const ValueType* rhsData = mConnectivity->nodes()[offset]->buffer().data();
1292 const Index lastOffset = LeafNodeType::DIM * (LeafNodeType::DIM - 1);
1293 const Index lhsOffset =
1294 firstFace ? 0 : lastOffset, rhsOffset = firstFace ? lastOffset : 0;
1296 Index tmpPos(0), pos(0);
1297 bool changedValue =
false;
1299 for (
Index x = 0; x < LeafNodeType::DIM; ++x) {
1300 tmpPos = x << (2 * LeafNodeType::LOG2DIM);
1301 for (
Index z = 0; z < LeafNodeType::DIM; ++z) {
1304 if (lhsData[pos + lhsOffset] >
ValueType(0.75)) {
1305 if (rhsData[pos + rhsOffset] <
ValueType(0.0)) {
1306 changedValue =
true;
1307 mask[pos + lhsOffset] =
true;
1313 return changedValue;
1321 const size_t offset =
1322 firstFace ? mConnectivity->offsetsPrevX()[n] : mConnectivity->offsetsNextX()[n];
1323 if (offset != ConnectivityTable::INVALID_OFFSET && mChangedNodeMask[offset]) {
1325 bool* mask = &mChangedVoxelMask[n * LeafNodeType::SIZE];
1327 const ValueType* lhsData = mConnectivity->nodes()[n]->buffer().data();
1328 const ValueType* rhsData = mConnectivity->nodes()[offset]->buffer().data();
1330 const Index lastOffset = LeafNodeType::DIM * LeafNodeType::DIM * (LeafNodeType::DIM-1);
1331 const Index lhsOffset =
1332 firstFace ? 0 : lastOffset, rhsOffset = firstFace ? lastOffset : 0;
1334 Index tmpPos(0), pos(0);
1335 bool changedValue =
false;
1337 for (
Index y = 0; y < LeafNodeType::DIM; ++y) {
1338 tmpPos = y << LeafNodeType::LOG2DIM;
1339 for (
Index z = 0; z < LeafNodeType::DIM; ++z) {
1342 if (lhsData[pos + lhsOffset] >
ValueType(0.75)) {
1343 if (rhsData[pos + rhsOffset] <
ValueType(0.0)) {
1344 changedValue =
true;
1345 mask[pos + lhsOffset] =
true;
1351 return changedValue;
1366 template<
typename TreeType,
typename MeshDataAdapter>
1380 std::vector<LeafNodeType*>& distNodes,
1381 const TreeType& distTree,
1384 : mDistNodes(distNodes.empty() ? nullptr : &distNodes[0])
1385 , mDistTree(&distTree)
1386 , mIndexTree(&indexTree)
1400 Index xPos(0), yPos(0);
1401 Coord ijk, nijk, nodeMin, nodeMax;
1402 Vec3d cp, xyz, nxyz, dir1, dir2;
1404 LocalData& localData = mLocalDataTable->local();
1407 if (!points) points.reset(
new Vec3d[LeafNodeType::SIZE * 2]);
1410 if (!mask) mask.reset(
new bool[LeafNodeType::SIZE]);
1413 typename LeafNodeType::ValueOnCIter it;
1415 for (
size_t n = range.begin(), N = range.end(); n < N; ++n) {
1421 const Int32* idxData = idxNode->buffer().data();
1423 nodeMin = node.origin();
1424 nodeMax = nodeMin.
offsetBy(LeafNodeType::DIM - 1);
1427 memset(mask.get(), 0,
sizeof(
bool) * LeafNodeType::SIZE);
1429 for (it = node.cbeginValueOn(); it; ++it) {
1430 Index pos = it.pos();
1433 if (dist < 0.0 || dist > 0.75)
continue;
1435 ijk = node.offsetToGlobalCoord(pos);
1437 xyz[0] = double(ijk[0]);
1438 xyz[1] = double(ijk[1]);
1439 xyz[2] = double(ijk[2]);
1445 bool flipSign =
false;
1447 for (nijk[0] = bbox.
min()[0]; nijk[0] <= bbox.
max()[0] && !flipSign; ++nijk[0]) {
1448 xPos = (nijk[0] & (LeafNodeType::DIM - 1u)) << (2 * LeafNodeType::LOG2DIM);
1449 for (nijk[1]=bbox.
min()[1]; nijk[1] <= bbox.
max()[1] && !flipSign; ++nijk[1]) {
1450 yPos = xPos + ((nijk[1] & (LeafNodeType::DIM-1u)) << LeafNodeType::LOG2DIM);
1451 for (nijk[2] = bbox.
min()[2]; nijk[2] <= bbox.
max()[2]; ++nijk[2]) {
1452 pos = yPos + (nijk[2] & (LeafNodeType::DIM - 1u));
1454 const Int32& polyIdx = idxData[pos];
1459 const Index pointIndex = pos * 2;
1465 nxyz[0] = double(nijk[0]);
1466 nxyz[1] = double(nijk[1]);
1467 nxyz[2] = double(nijk[2]);
1469 Vec3d& point = points[pointIndex];
1471 point = closestPoint(nxyz, polyIdx);
1473 Vec3d& direction = points[pointIndex + 1];
1474 direction = nxyz - point;
1475 direction.normalize();
1478 dir1 = xyz - points[pointIndex];
1481 if (points[pointIndex + 1].dot(dir1) > 0.0) {
1492 for (
Int32 m = 0; m < 26; ++m) {
1496 nxyz[0] = double(nijk[0]);
1497 nxyz[1] = double(nijk[1]);
1498 nxyz[2] = double(nijk[2]);
1500 cp = closestPoint(nxyz, idxAcc.
getValue(nijk));
1508 if (dir2.dot(dir1) > 0.0) {
1524 Vec3d a, b, c, cp, uvw;
1526 const size_t polygon = size_t(polyIdx);
1527 mMesh->getIndexSpacePoint(polygon, 0, a);
1528 mMesh->getIndexSpacePoint(polygon, 1, b);
1529 mMesh->getIndexSpacePoint(polygon, 2, c);
1533 if (4 == mMesh->vertexCount(polygon)) {
1535 mMesh->getIndexSpacePoint(polygon, 3, b);
1539 if ((center - c).lengthSqr() < (center - cp).lengthSqr()) {
1548 LeafNodeType **
const mDistNodes;
1549 TreeType
const *
const mDistTree;
1550 Int32TreeType
const *
const mIndexTree;
1553 SharedPtr<LocalDataTable> mLocalDataTable;
1560 template<
typename LeafNodeType>
1564 using NodeT = LeafNodeType;
1566 const Coord ijk = NodeT::offsetToLocalCoord(pos);
1570 mask[0] = ijk[0] != (NodeT::DIM - 1);
1572 mask[1] = ijk[0] != 0;
1574 mask[2] = ijk[1] != (NodeT::DIM - 1);
1576 mask[3] = ijk[1] != 0;
1578 mask[4] = ijk[2] != (NodeT::DIM - 1);
1580 mask[5] = ijk[2] != 0;
1584 mask[6] = mask[0] && mask[5];
1586 mask[7] = mask[1] && mask[5];
1588 mask[8] = mask[0] && mask[4];
1590 mask[9] = mask[1] && mask[4];
1592 mask[10] = mask[0] && mask[2];
1594 mask[11] = mask[1] && mask[2];
1596 mask[12] = mask[0] && mask[3];
1598 mask[13] = mask[1] && mask[3];
1600 mask[14] = mask[3] && mask[4];
1602 mask[15] = mask[3] && mask[5];
1604 mask[16] = mask[2] && mask[4];
1606 mask[17] = mask[2] && mask[5];
1610 mask[18] = mask[1] && mask[3] && mask[5];
1612 mask[19] = mask[1] && mask[3] && mask[4];
1614 mask[20] = mask[0] && mask[3] && mask[4];
1616 mask[21] = mask[0] && mask[3] && mask[5];
1618 mask[22] = mask[1] && mask[2] && mask[5];
1620 mask[23] = mask[1] && mask[2] && mask[4];
1622 mask[24] = mask[0] && mask[2] && mask[4];
1624 mask[25] = mask[0] && mask[2] && mask[5];
1628 template<
typename Compare,
typename LeafNodeType>
1632 using NodeT = LeafNodeType;
1635 if (mask[5] && Compare::check(data[pos - 1]))
return true;
1637 if (mask[4] && Compare::check(data[pos + 1]))
return true;
1639 if (mask[3] && Compare::check(data[pos - NodeT::DIM]))
return true;
1641 if (mask[2] && Compare::check(data[pos + NodeT::DIM]))
return true;
1643 if (mask[1] && Compare::check(data[pos - NodeT::DIM * NodeT::DIM]))
return true;
1645 if (mask[0] && Compare::check(data[pos + NodeT::DIM * NodeT::DIM]))
return true;
1647 if (mask[6] && Compare::check(data[pos + NodeT::DIM * NodeT::DIM]))
return true;
1649 if (mask[7] && Compare::check(data[pos - NodeT::DIM * NodeT::DIM - 1]))
return true;
1651 if (mask[8] && Compare::check(data[pos + NodeT::DIM * NodeT::DIM + 1]))
return true;
1653 if (mask[9] && Compare::check(data[pos - NodeT::DIM * NodeT::DIM + 1]))
return true;
1655 if (mask[10] && Compare::check(data[pos + NodeT::DIM * NodeT::DIM + NodeT::DIM]))
return true;
1657 if (mask[11] && Compare::check(data[pos - NodeT::DIM * NodeT::DIM + NodeT::DIM]))
return true;
1659 if (mask[12] && Compare::check(data[pos + NodeT::DIM * NodeT::DIM - NodeT::DIM]))
return true;
1661 if (mask[13] && Compare::check(data[pos - NodeT::DIM * NodeT::DIM - NodeT::DIM]))
return true;
1663 if (mask[14] && Compare::check(data[pos - NodeT::DIM + 1]))
return true;
1665 if (mask[15] && Compare::check(data[pos - NodeT::DIM - 1]))
return true;
1667 if (mask[16] && Compare::check(data[pos + NodeT::DIM + 1]))
return true;
1669 if (mask[17] && Compare::check(data[pos + NodeT::DIM - 1]))
return true;
1671 if (mask[18] && Compare::check(data[pos - NodeT::DIM * NodeT::DIM - NodeT::DIM - 1]))
return true;
1673 if (mask[19] && Compare::check(data[pos - NodeT::DIM * NodeT::DIM - NodeT::DIM + 1]))
return true;
1675 if (mask[20] && Compare::check(data[pos + NodeT::DIM * NodeT::DIM - NodeT::DIM + 1]))
return true;
1677 if (mask[21] && Compare::check(data[pos + NodeT::DIM * NodeT::DIM - NodeT::DIM - 1]))
return true;
1679 if (mask[22] && Compare::check(data[pos - NodeT::DIM * NodeT::DIM + NodeT::DIM - 1]))
return true;
1681 if (mask[23] && Compare::check(data[pos - NodeT::DIM * NodeT::DIM + NodeT::DIM + 1]))
return true;
1683 if (mask[24] && Compare::check(data[pos + NodeT::DIM * NodeT::DIM + NodeT::DIM + 1]))
return true;
1685 if (mask[25] && Compare::check(data[pos + NodeT::DIM * NodeT::DIM + NodeT::DIM - 1]))
return true;
1691 template<
typename Compare,
typename AccessorType>
1695 for (
Int32 m = 0; m < 26; ++m) {
1705 template<
typename TreeType>
1715 , mNodes(nodes.empty() ? nullptr : &nodes[0])
1722 bool neighbourMask[26];
1724 for (
size_t n = range.begin(), N = range.end(); n < N; ++n) {
1729 typename LeafNodeType::ValueOnCIter it;
1730 for (it = node.cbeginValueOn(); it; ++it) {
1732 const Index pos = it.pos();
1735 if (dist < 0.0 || dist > 0.75)
continue;
1738 maskNodeInternalNeighbours<LeafNodeType>(pos, neighbourMask);
1740 const bool hasNegativeNeighbour =
1741 checkNeighbours<IsNegative, LeafNodeType>(pos, data, neighbourMask) ||
1742 checkNeighbours<IsNegative>(node.offsetToGlobalCoord(pos), acc, neighbourMask);
1744 if (!hasNegativeNeighbour) {
1757 template<
typename TreeType>
1768 : mNodes(nodes.empty() ? nullptr : &nodes[0])
1769 , mDistTree(&distTree)
1770 , mIndexTree(&indexTree)
1778 bool neighbourMask[26];
1780 for (
size_t n = range.begin(), N = range.end(); n < N; ++n) {
1783 ValueType* data = distNode.buffer().data();
1785 typename Int32TreeType::LeafNodeType* idxNode =
1788 typename LeafNodeType::ValueOnCIter it;
1789 for (it = distNode.cbeginValueOn(); it; ++it) {
1791 const Index pos = it.pos();
1793 if (!(data[pos] > 0.75))
continue;
1796 maskNodeInternalNeighbours<LeafNodeType>(pos, neighbourMask);
1798 const bool hasBoundaryNeighbour =
1799 checkNeighbours<Comp, LeafNodeType>(pos, data, neighbourMask) ||
1800 checkNeighbours<Comp>(distNode.offsetToGlobalCoord(pos),distAcc,neighbourMask);
1802 if (!hasBoundaryNeighbour) {
1803 distNode.setValueOff(pos);
1804 idxNode->setValueOff(pos);
1819 template<
typename NodeType>
1826 using NodeMaskType =
typename NodeType::NodeMaskType;
1828 for (
size_t n = range.begin(), N = range.end(); n < N; ++n) {
1829 const_cast<NodeMaskType&
>(mNodes[n]->getChildMask()).setOff();
1837 template<
typename TreeType>
1841 using RootNodeType =
typename TreeType::RootNodeType;
1842 using NodeChainType =
typename RootNodeType::NodeChainType;
1843 using InternalNodeType =
typename boost::mpl::at<NodeChainType, boost::mpl::int_<1> >::type;
1845 std::vector<InternalNodeType*> nodes;
1846 tree.getNodes(nodes);
1848 tbb::parallel_for(tbb::blocked_range<size_t>(0, nodes.size()),
1853 template<
typename TreeType>
1859 std::vector<LeafNodeType*>& overlappingNodes)
1860 : mLhsTree(&lhsTree)
1861 , mRhsTree(&rhsTree)
1862 , mNodes(&overlappingNodes)
1868 std::vector<LeafNodeType*> rhsLeafNodes;
1870 rhsLeafNodes.reserve(mRhsTree->leafCount());
1873 mRhsTree->stealNodes(rhsLeafNodes);
1877 for (
size_t n = 0, N = rhsLeafNodes.size(); n < N; ++n) {
1878 if (!acc.
probeLeaf(rhsLeafNodes[n]->origin())) {
1881 mNodes->push_back(rhsLeafNodes[n]);
1887 TreeType *
const mLhsTree;
1888 TreeType *
const mRhsTree;
1889 std::vector<LeafNodeType*> *
const mNodes;
1893 template<
typename DistTreeType,
typename IndexTreeType>
1896 DistTreeType& rhsDist, IndexTreeType& rhsIdx)
1898 using DistLeafNodeType =
typename DistTreeType::LeafNodeType;
1899 using IndexLeafNodeType =
typename IndexTreeType::LeafNodeType;
1901 std::vector<DistLeafNodeType*> overlappingDistNodes;
1902 std::vector<IndexLeafNodeType*> overlappingIdxNodes;
1905 tbb::task_group tasks;
1911 if (!overlappingDistNodes.empty() && !overlappingIdxNodes.empty()) {
1912 tbb::parallel_for(tbb::blocked_range<size_t>(0, overlappingDistNodes.size()),
1914 &overlappingDistNodes[0], &overlappingIdxNodes[0]));
1924 template<
typename TreeType>
1927 using Ptr = std::unique_ptr<VoxelizationData>;
1931 using UCharTreeType =
typename TreeType::template ValueConverter<unsigned char>::Type;
1942 , indexAcc(indexTree)
1943 , primIdTree(MaxPrimId)
1944 , primIdAcc(primIdTree)
1960 if (mPrimCount == MaxPrimId || primIdTree.leafCount() > 1000) {
1965 return mPrimCount++;
1970 enum { MaxPrimId = 100 };
1972 unsigned char mPrimCount;
1976 template<
typename TreeType,
typename MeshDataAdapter,
typename Interrupter = util::NullInterrupter>
1982 using DataTable = tbb::enumerable_thread_specific<typename VoxelizationDataType::Ptr>;
1986 Interrupter* interrupter =
nullptr)
1987 : mDataTable(&dataTable)
1989 , mInterrupter(interrupter)
2000 for (
size_t n = range.begin(), N = range.end(); n < N; ++n) {
2003 tbb::task::self().cancel_group_execution();
2007 const size_t numVerts = mMesh->vertexCount(n);
2010 if (numVerts == 3 || numVerts == 4) {
2012 prim.index =
Int32(n);
2014 mMesh->getIndexSpacePoint(n, 0, prim.a);
2015 mMesh->getIndexSpacePoint(n, 1, prim.b);
2016 mMesh->getIndexSpacePoint(n, 2, prim.c);
2018 evalTriangle(prim, *dataPtr);
2020 if (numVerts == 4) {
2021 mMesh->getIndexSpacePoint(n, 3, prim.b);
2022 evalTriangle(prim, *dataPtr);
2030 bool wasInterrupted()
const {
return mInterrupter && mInterrupter->wasInterrupted(); }
2032 struct Triangle {
Vec3d a, b, c;
Int32 index; };
2036 enum { POLYGON_LIMIT = 1000 };
2038 SubTask(
const Triangle& prim, DataTable& dataTable,
2039 int subdivisionCount,
size_t polygonCount,
2040 Interrupter* interrupter =
nullptr)
2041 : mLocalDataTable(&dataTable)
2043 , mSubdivisionCount(subdivisionCount)
2044 , mPolygonCount(polygonCount)
2045 , mInterrupter(interrupter)
2049 void operator()()
const
2051 if (mSubdivisionCount <= 0 || mPolygonCount >= POLYGON_LIMIT) {
2053 typename VoxelizationDataType::Ptr& dataPtr = mLocalDataTable->local();
2054 if (!dataPtr) dataPtr.reset(
new VoxelizationDataType());
2056 voxelizeTriangle(mPrim, *dataPtr, mInterrupter);
2058 }
else if (!(mInterrupter && mInterrupter->wasInterrupted())) {
2059 spawnTasks(mPrim, *mLocalDataTable, mSubdivisionCount, mPolygonCount, mInterrupter);
2063 DataTable *
const mLocalDataTable;
2064 Triangle
const mPrim;
2065 int const mSubdivisionCount;
2066 size_t const mPolygonCount;
2067 Interrupter *
const mInterrupter;
2070 inline static int evalSubdivisionCount(
const Triangle& prim)
2072 const double ax = prim.a[0], bx = prim.b[0], cx = prim.c[0];
2075 const double ay = prim.a[1], by = prim.b[1], cy = prim.c[1];
2078 const double az = prim.a[2], bz = prim.b[2], cz = prim.c[2];
2081 return int(
std::max(dx,
std::max(dy, dz)) /
double(TreeType::LeafNodeType::DIM * 2));
2084 void evalTriangle(
const Triangle& prim, VoxelizationDataType& data)
const
2086 const size_t polygonCount = mMesh->polygonCount();
2087 const int subdivisionCount =
2088 polygonCount < SubTask::POLYGON_LIMIT ? evalSubdivisionCount(prim) : 0;
2090 if (subdivisionCount <= 0) {
2091 voxelizeTriangle(prim, data, mInterrupter);
2093 spawnTasks(prim, *mDataTable, subdivisionCount, polygonCount, mInterrupter);
2097 static void spawnTasks(
2098 const Triangle& mainPrim,
2099 DataTable& dataTable,
2100 int subdivisionCount,
2101 size_t polygonCount,
2102 Interrupter*
const interrupter)
2104 subdivisionCount -= 1;
2107 tbb::task_group tasks;
2109 const Vec3d ac = (mainPrim.a + mainPrim.c) * 0.5;
2110 const Vec3d bc = (mainPrim.b + mainPrim.c) * 0.5;
2111 const Vec3d ab = (mainPrim.a + mainPrim.b) * 0.5;
2114 prim.index = mainPrim.index;
2116 prim.a = mainPrim.a;
2119 tasks.run(SubTask(prim, dataTable, subdivisionCount, polygonCount, interrupter));
2124 tasks.run(SubTask(prim, dataTable, subdivisionCount, polygonCount, interrupter));
2127 prim.b = mainPrim.b;
2129 tasks.run(SubTask(prim, dataTable, subdivisionCount, polygonCount, interrupter));
2133 prim.c = mainPrim.c;
2134 tasks.run(SubTask(prim, dataTable, subdivisionCount, polygonCount, interrupter));
2139 static void voxelizeTriangle(
const Triangle& prim, VoxelizationDataType& data, Interrupter*
const interrupter)
2141 std::deque<Coord> coordList;
2144 ijk = Coord::floor(prim.a);
2145 coordList.push_back(ijk);
2150 updateDistance(ijk, prim, data);
2152 unsigned char primId = data.getNewPrimId();
2153 data.primIdAcc.setValueOnly(ijk, primId);
2155 while (!coordList.empty()) {
2156 if (interrupter && interrupter->wasInterrupted()) {
2157 tbb::task::self().cancel_group_execution();
2160 for (
Int32 pass = 0; pass < 1048576 && !coordList.empty(); ++pass) {
2161 ijk = coordList.back();
2162 coordList.pop_back();
2164 for (
Int32 i = 0; i < 26; ++i) {
2166 if (primId != data.primIdAcc.getValue(nijk)) {
2167 data.primIdAcc.setValueOnly(nijk, primId);
2168 if(updateDistance(nijk, prim, data)) coordList.push_back(nijk);
2175 static bool updateDistance(
const Coord& ijk,
const Triangle& prim, VoxelizationDataType& data)
2177 Vec3d uvw, voxelCenter(ijk[0], ijk[1], ijk[2]);
2179 using ValueType =
typename TreeType::ValueType;
2181 const ValueType dist = ValueType((voxelCenter -
2186 if (std::isnan(dist))
2189 const ValueType oldDist = data.distAcc.getValue(ijk);
2191 if (dist < oldDist) {
2192 data.distAcc.setValue(ijk, dist);
2193 data.indexAcc.setValue(ijk, prim.index);
2197 data.indexAcc.setValueOnly(ijk,
std::min(prim.index, data.indexAcc.getValue(ijk)));
2200 return !(dist > 0.75);
2203 DataTable *
const mDataTable;
2205 Interrupter *
const mInterrupter;
2212 template<
typename TreeType>
2218 using BoolTreeType =
typename TreeType::template ValueConverter<bool>::Type;
2222 std::vector<BoolLeafNodeType*>& lhsNodes)
2223 : mRhsTree(&rhsTree), mLhsNodes(lhsNodes.empty() ? nullptr : &lhsNodes[0])
2231 for (
size_t n = range.begin(), N = range.end(); n < N; ++n) {
2236 if (rhsNode) lhsNode->topologyDifference(*rhsNode,
false);
2241 TreeType
const *
const mRhsTree;
2242 BoolLeafNodeType **
const mLhsNodes;
2246 template<
typename LeafNodeTypeA,
typename LeafNodeTypeB>
2250 : mNodesA(nodesA.empty() ? nullptr : &nodesA[0])
2251 , mNodesB(nodesB.empty() ? nullptr : &nodesB[0])
2256 for (
size_t n = range.begin(), N = range.end(); n < N; ++n) {
2257 mNodesA[n]->topologyUnion(*mNodesB[n]);
2262 LeafNodeTypeA **
const mNodesA;
2263 LeafNodeTypeB **
const mNodesB;
2267 template<
typename TreeType>
2272 using BoolTreeType =
typename TreeType::template ValueConverter<bool>::Type;
2276 std::vector<LeafNodeType*>& nodes)
2278 , mNodes(nodes.empty() ? nullptr : &nodes[0])
2279 , mLocalMaskTree(false)
2280 , mMaskTree(&maskTree)
2286 , mNodes(rhs.mNodes)
2287 , mLocalMaskTree(false)
2288 , mMaskTree(&mLocalMaskTree)
2294 using Iterator =
typename LeafNodeType::ValueOnCIter;
2299 Coord ijk, nijk, localCorod;
2302 for (
size_t n = range.begin(); n != range.end(); ++n) {
2306 CoordBBox bbox = node.getNodeBoundingBox();
2311 for (Iterator it = node.cbeginValueOn(); it; ++it) {
2312 ijk = it.getCoord();
2315 localCorod = LeafNodeType::offsetToLocalCoord(pos);
2317 if (localCorod[2] <
int(LeafNodeType::DIM - 1)) {
2319 if (!node.isValueOn(npos)) maskNode.setValueOn(npos);
2325 if (localCorod[2] > 0) {
2327 if (!node.isValueOn(npos)) maskNode.setValueOn(npos);
2333 if (localCorod[1] <
int(LeafNodeType::DIM - 1)) {
2334 npos = pos + LeafNodeType::DIM;
2335 if (!node.isValueOn(npos)) maskNode.setValueOn(npos);
2341 if (localCorod[1] > 0) {
2342 npos = pos - LeafNodeType::DIM;
2343 if (!node.isValueOn(npos)) maskNode.setValueOn(npos);
2349 if (localCorod[0] <
int(LeafNodeType::DIM - 1)) {
2350 npos = pos + LeafNodeType::DIM * LeafNodeType::DIM;
2351 if (!node.isValueOn(npos)) maskNode.setValueOn(npos);
2357 if (localCorod[0] > 0) {
2358 npos = pos - LeafNodeType::DIM * LeafNodeType::DIM;
2359 if (!node.isValueOn(npos)) maskNode.setValueOn(npos);
2371 TreeType
const *
const mTree;
2372 LeafNodeType **
const mNodes;
2374 BoolTreeType mLocalMaskTree;
2375 BoolTreeType *
const mMaskTree;
2380 template<
typename TreeType,
typename MeshDataAdapter>
2388 using BoolTreeType =
typename TreeType::template ValueConverter<bool>::Type;
2399 : idx(idx_), x(x_), y(y_), z(z_), dist(dist_)
2409 std::vector<BoolLeafNodeType*>& maskNodes,
2417 : mMaskNodes(maskNodes.empty() ? nullptr : &maskNodes[0])
2418 , mMaskTree(&maskTree)
2419 , mDistTree(&distTree)
2420 , mIndexTree(&indexTree)
2422 , mNewMaskTree(false)
2424 , mUpdatedDistNodes()
2426 , mUpdatedIndexNodes()
2427 , mExteriorBandWidth(exteriorBandWidth)
2428 , mInteriorBandWidth(interiorBandWidth)
2429 , mVoxelSize(voxelSize)
2434 : mMaskNodes(rhs.mMaskNodes)
2435 , mMaskTree(rhs.mMaskTree)
2436 , mDistTree(rhs.mDistTree)
2437 , mIndexTree(rhs.mIndexTree)
2439 , mNewMaskTree(false)
2441 , mUpdatedDistNodes()
2443 , mUpdatedIndexNodes()
2444 , mExteriorBandWidth(rhs.mExteriorBandWidth)
2445 , mInteriorBandWidth(rhs.mInteriorBandWidth)
2446 , mVoxelSize(rhs.mVoxelSize)
2452 mDistNodes.insert(mDistNodes.end(), rhs.mDistNodes.begin(), rhs.mDistNodes.end());
2453 mIndexNodes.insert(mIndexNodes.end(), rhs.mIndexNodes.begin(), rhs.mIndexNodes.end());
2455 mUpdatedDistNodes.insert(mUpdatedDistNodes.end(),
2456 rhs.mUpdatedDistNodes.begin(), rhs.mUpdatedDistNodes.end());
2458 mUpdatedIndexNodes.insert(mUpdatedIndexNodes.end(),
2459 rhs.mUpdatedIndexNodes.begin(), rhs.mUpdatedIndexNodes.end());
2461 mNewMaskTree.merge(rhs.mNewMaskTree);
2470 std::vector<Fragment> fragments;
2471 fragments.reserve(256);
2473 std::unique_ptr<LeafNodeType> newDistNodePt;
2474 std::unique_ptr<Int32LeafNodeType> newIndexNodePt;
2476 for (
size_t n = range.begin(), N = range.end(); n < N; ++n) {
2479 if (maskNode.isEmpty())
continue;
2483 const Coord& origin = maskNode.origin();
2488 assert(!distNodePt == !indexNodePt);
2490 bool usingNewNodes =
false;
2492 if (!distNodePt && !indexNodePt) {
2496 if (!newDistNodePt.get() && !newIndexNodePt.get()) {
2497 newDistNodePt.reset(
new LeafNodeType(origin, backgroundDist));
2501 if ((backgroundDist <
ValueType(0.0)) !=
2502 (newDistNodePt->getValue(0) <
ValueType(0.0))) {
2503 newDistNodePt->buffer().fill(backgroundDist);
2506 newDistNodePt->setOrigin(origin);
2507 newIndexNodePt->setOrigin(origin);
2510 distNodePt = newDistNodePt.get();
2511 indexNodePt = newIndexNodePt.get();
2513 usingNewNodes =
true;
2520 for (
typename BoolLeafNodeType::ValueOnIter it = maskNode.beginValueOn(); it; ++it) {
2521 bbox.
expand(it.getCoord());
2526 gatherFragments(fragments, bbox, distAcc, indexAcc);
2531 bbox = maskNode.getNodeBoundingBox();
2533 bool updatedLeafNodes =
false;
2535 for (
typename BoolLeafNodeType::ValueOnIter it = maskNode.beginValueOn(); it; ++it) {
2537 const Coord ijk = it.getCoord();
2539 if (updateVoxel(ijk, 5, fragments, *distNodePt, *indexNodePt, &updatedLeafNodes)) {
2541 for (
Int32 i = 0; i < 6; ++i) {
2544 mask.setOn(BoolLeafNodeType::coordToOffset(nijk));
2550 for (
Int32 i = 6; i < 26; ++i) {
2553 mask.setOn(BoolLeafNodeType::coordToOffset(nijk));
2559 if (updatedLeafNodes) {
2562 mask -= indexNodePt->getValueMask();
2564 for (
typename NodeMaskType::OnIterator it = mask.beginOn(); it; ++it) {
2566 const Index pos = it.pos();
2567 const Coord ijk = maskNode.origin() + LeafNodeType::offsetToLocalCoord(pos);
2569 if (updateVoxel(ijk, 6, fragments, *distNodePt, *indexNodePt)) {
2570 for (
Int32 i = 0; i < 6; ++i) {
2577 if (usingNewNodes) {
2578 newDistNodePt->topologyUnion(*newIndexNodePt);
2579 mDistNodes.push_back(newDistNodePt.release());
2580 mIndexNodes.push_back(newIndexNodePt.release());
2582 mUpdatedDistNodes.push_back(distNodePt);
2583 mUpdatedIndexNodes.push_back(indexNodePt);
2603 gatherFragments(std::vector<Fragment>& fragments,
const CoordBBox& bbox,
2607 const Coord nodeMin = bbox.
min() & ~(LeafNodeType::DIM - 1);
2608 const Coord nodeMax = bbox.
max() & ~(LeafNodeType::DIM - 1);
2613 for (ijk[0] = nodeMin[0]; ijk[0] <= nodeMax[0]; ijk[0] += LeafNodeType::DIM) {
2614 for (ijk[1] = nodeMin[1]; ijk[1] <= nodeMax[1]; ijk[1] += LeafNodeType::DIM) {
2615 for (ijk[2] = nodeMin[2]; ijk[2] <= nodeMax[2]; ijk[2] += LeafNodeType::DIM) {
2616 if (LeafNodeType* distleaf = distAcc.
probeLeaf(ijk)) {
2619 ijk.
offsetBy(LeafNodeType::DIM - 1));
2620 gatherFragments(fragments, region, *distleaf, *indexAcc.
probeLeaf(ijk));
2626 std::sort(fragments.begin(), fragments.end());
2630 gatherFragments(std::vector<Fragment>& fragments,
const CoordBBox& bbox,
2631 const LeafNodeType& distLeaf,
const Int32LeafNodeType& idxLeaf)
const
2633 const typename LeafNodeType::NodeMaskType& mask = distLeaf.getValueMask();
2634 const ValueType* distData = distLeaf.buffer().data();
2635 const Int32* idxData = idxLeaf.buffer().data();
2637 for (
int x = bbox.min()[0]; x <= bbox.max()[0]; ++x) {
2638 const Index xPos = (x & (LeafNodeType::DIM - 1u)) << (2 * LeafNodeType::LOG2DIM);
2639 for (
int y = bbox.min()[1]; y <= bbox.max()[1]; ++y) {
2640 const Index yPos = xPos + ((y & (LeafNodeType::DIM - 1u)) << LeafNodeType::LOG2DIM);
2641 for (
int z = bbox.min()[2]; z <= bbox.max()[2]; ++z) {
2642 const Index pos = yPos + (z & (LeafNodeType::DIM - 1u));
2643 if (mask.isOn(pos)) {
2644 fragments.push_back(Fragment(idxData[pos],x,y,z, std::abs(distData[pos])));
2654 computeDistance(
const Coord& ijk,
const Int32 manhattanLimit,
2655 const std::vector<Fragment>& fragments,
Int32& closestPrimIdx)
const
2657 Vec3d a, b, c, uvw, voxelCenter(ijk[0], ijk[1], ijk[2]);
2661 for (
size_t n = 0, N = fragments.size(); n < N; ++n) {
2663 const Fragment& fragment = fragments[n];
2664 if (lastIdx == fragment.idx)
continue;
2666 const Int32 dx = std::abs(fragment.x - ijk[0]);
2667 const Int32 dy = std::abs(fragment.y - ijk[1]);
2668 const Int32 dz = std::abs(fragment.z - ijk[2]);
2670 const Int32 manhattan = dx + dy + dz;
2671 if (manhattan > manhattanLimit)
continue;
2673 lastIdx = fragment.idx;
2675 const size_t polygon = size_t(lastIdx);
2677 mMesh->getIndexSpacePoint(polygon, 0, a);
2678 mMesh->getIndexSpacePoint(polygon, 1, b);
2679 mMesh->getIndexSpacePoint(polygon, 2, c);
2681 primDist = (voxelCenter -
2685 if (4 == mMesh->vertexCount(polygon)) {
2687 mMesh->getIndexSpacePoint(polygon, 3, b);
2690 a, b, c, voxelCenter, uvw)).lengthSqr();
2692 if (tmpDist < primDist) primDist = tmpDist;
2695 if (primDist < dist) {
2697 closestPrimIdx = lastIdx;
2701 return ValueType(std::sqrt(dist)) * mVoxelSize;
2707 updateVoxel(
const Coord& ijk,
const Int32 manhattanLimit,
2708 const std::vector<Fragment>& fragments,
2709 LeafNodeType& distLeaf, Int32LeafNodeType& idxLeaf,
bool* updatedLeafNodes =
nullptr)
2711 Int32 closestPrimIdx = 0;
2712 const ValueType distance = computeDistance(ijk, manhattanLimit, fragments, closestPrimIdx);
2714 const Index pos = LeafNodeType::coordToOffset(ijk);
2715 const bool inside = distLeaf.getValue(pos) < ValueType(0.0);
2717 bool activateNeighbourVoxels =
false;
2719 if (!inside && distance < mExteriorBandWidth) {
2720 if (updatedLeafNodes) *updatedLeafNodes =
true;
2721 activateNeighbourVoxels = (distance + mVoxelSize) < mExteriorBandWidth;
2722 distLeaf.setValueOnly(pos, distance);
2723 idxLeaf.setValueOn(pos, closestPrimIdx);
2724 }
else if (inside && distance < mInteriorBandWidth) {
2725 if (updatedLeafNodes) *updatedLeafNodes =
true;
2726 activateNeighbourVoxels = (distance + mVoxelSize) < mInteriorBandWidth;
2727 distLeaf.setValueOnly(pos, -distance);
2728 idxLeaf.setValueOn(pos, closestPrimIdx);
2731 return activateNeighbourVoxels;
2736 BoolLeafNodeType **
const mMaskNodes;
2737 BoolTreeType *
const mMaskTree;
2738 TreeType *
const mDistTree;
2739 Int32TreeType *
const mIndexTree;
2743 BoolTreeType mNewMaskTree;
2745 std::vector<LeafNodeType*> mDistNodes, mUpdatedDistNodes;
2746 std::vector<Int32LeafNodeType*> mIndexNodes, mUpdatedIndexNodes;
2748 const ValueType mExteriorBandWidth, mInteriorBandWidth, mVoxelSize;
2752 template<
typename TreeType>
2756 AddNodes(TreeType& tree, std::vector<LeafNodeType*>& nodes)
2757 : mTree(&tree) , mNodes(&nodes)
2763 std::vector<LeafNodeType*>& nodes = *mNodes;
2764 for (
size_t n = 0, N = nodes.size(); n < N; ++n) {
2774 template<
typename TreeType,
typename Int32TreeType,
typename BoolTreeType,
typename MeshDataAdapter>
2778 Int32TreeType& indexTree,
2779 BoolTreeType& maskTree,
2780 std::vector<typename BoolTreeType::LeafNodeType*>& maskNodes,
2782 typename TreeType::ValueType exteriorBandWidth,
2783 typename TreeType::ValueType interiorBandWidth,
2784 typename TreeType::ValueType voxelSize)
2787 distTree, indexTree, mesh, exteriorBandWidth, interiorBandWidth, voxelSize);
2789 tbb::parallel_reduce(tbb::blocked_range<size_t>(0, maskNodes.size()), expandOp);
2791 tbb::parallel_for(tbb::blocked_range<size_t>(0, expandOp.
updatedIndexNodes().size()),
2795 tbb::task_group tasks;
2809 template<
typename TreeType>
2818 , mVoxelSize(voxelSize)
2819 , mUnsigned(unsignedDist)
2825 typename LeafNodeType::ValueOnIter iter;
2827 const bool udf = mUnsigned;
2828 const ValueType w[2] = { -mVoxelSize, mVoxelSize };
2830 for (
size_t n = range.begin(), N = range.end(); n < N; ++n) {
2832 for (iter = mNodes[n]->beginValueOn(); iter; ++iter) {
2834 val = w[udf || (val <
ValueType(0.0))] * std::sqrt(std::abs(val));
2840 LeafNodeType * *
const mNodes;
2841 const ValueType mVoxelSize;
2842 const bool mUnsigned;
2847 template<
typename TreeType>
2855 : mNodes(nodes.empty() ? nullptr : &nodes[0])
2856 , mExBandWidth(exBandWidth)
2857 , mInBandWidth(inBandWidth)
2863 typename LeafNodeType::ValueOnIter iter;
2867 for (
size_t n = range.begin(), N = range.end(); n < N; ++n) {
2869 for (iter = mNodes[n]->beginValueOn(); iter; ++iter) {
2873 const bool inside = val <
ValueType(0.0);
2875 if (inside && !(val > inVal)) {
2878 }
else if (!inside && !(val < exVal)) {
2887 LeafNodeType * *
const mNodes;
2888 const ValueType mExBandWidth, mInBandWidth;
2892 template<
typename TreeType>
2899 : mNodes(nodes.empty() ? nullptr : &nodes[0]), mOffset(offset)
2907 for (
size_t n = range.begin(), N = range.end(); n < N; ++n) {
2909 typename LeafNodeType::ValueOnIter iter = mNodes[n]->beginValueOn();
2911 for (; iter; ++iter) {
2919 LeafNodeType * *
const mNodes;
2920 const ValueType mOffset;
2924 template<
typename TreeType>
2930 Renormalize(
const TreeType& tree,
const std::vector<LeafNodeType*>& nodes,
2933 , mNodes(nodes.empty() ? nullptr : &nodes[0])
2935 , mVoxelSize(voxelSize)
2950 for (
size_t n = range.begin(), N = range.end(); n < N; ++n) {
2952 ValueType* bufferData = &mBuffer[n * LeafNodeType::SIZE];
2954 typename LeafNodeType::ValueOnCIter iter = mNodes[n]->cbeginValueOn();
2955 for (; iter; ++iter) {
2959 ijk = iter.getCoord();
2974 bufferData[iter.pos()] = phi0 - dx * S * diff;
2980 TreeType
const *
const mTree;
2981 LeafNodeType
const *
const *
const mNodes;
2982 ValueType *
const mBuffer;
2984 const ValueType mVoxelSize;
2988 template<
typename TreeType>
2995 : mNodes(nodes.empty() ? nullptr : &nodes[0]), mBuffer(buffer)
3001 for (
size_t n = range.begin(), N = range.end(); n < N; ++n) {
3003 const ValueType* bufferData = &mBuffer[n * LeafNodeType::SIZE];
3005 typename LeafNodeType::ValueOnIter iter = mNodes[n]->beginValueOn();
3007 for (; iter; ++iter) {
3009 val =
std::min(val, bufferData[iter.pos()]);
3015 LeafNodeType * *
const mNodes;
3016 ValueType
const *
const mBuffer;
3028 template <
typename FloatTreeT>
3034 ConnectivityTable nodeConnectivity(tree);
3036 std::vector<size_t> zStartNodes, yStartNodes, xStartNodes;
3038 for (
size_t n = 0; n < nodeConnectivity.size(); ++n) {
3039 if (ConnectivityTable::INVALID_OFFSET == nodeConnectivity.offsetsPrevX()[n]) {
3040 xStartNodes.push_back(n);
3043 if (ConnectivityTable::INVALID_OFFSET == nodeConnectivity.offsetsPrevY()[n]) {
3044 yStartNodes.push_back(n);
3047 if (ConnectivityTable::INVALID_OFFSET == nodeConnectivity.offsetsPrevZ()[n]) {
3048 zStartNodes.push_back(n);
3054 tbb::parallel_for(tbb::blocked_range<size_t>(0, zStartNodes.size()),
3057 tbb::parallel_for(tbb::blocked_range<size_t>(0, yStartNodes.size()),
3060 tbb::parallel_for(tbb::blocked_range<size_t>(0, xStartNodes.size()),
3063 const size_t numLeafNodes = nodeConnectivity.size();
3064 const size_t numVoxels = numLeafNodes * FloatTreeT::LeafNodeType::SIZE;
3066 std::unique_ptr<bool[]> changedNodeMaskA{
new bool[numLeafNodes]};
3067 std::unique_ptr<bool[]> changedNodeMaskB{
new bool[numLeafNodes]};
3068 std::unique_ptr<bool[]> changedVoxelMask{
new bool[numVoxels]};
3074 const tbb::blocked_range<size_t> nodeRange(0, numLeafNodes);
3076 bool nodesUpdated =
false;
3079 nodeConnectivity.nodes(), changedNodeMaskA.get()));
3082 nodeConnectivity, changedNodeMaskA.get(), changedNodeMaskB.get(),
3083 changedVoxelMask.get()));
3085 changedNodeMaskA.swap(changedNodeMaskB);
3087 nodesUpdated =
false;
3088 for (
size_t n = 0; n < numLeafNodes; ++n) {
3089 nodesUpdated |= changedNodeMaskA[n];
3090 if (nodesUpdated)
break;
3095 nodeConnectivity.nodes(), changedNodeMaskA.get(), changedVoxelMask.get()));
3097 }
while (nodesUpdated);
3105 template <
typename Gr
idType,
typename MeshDataAdapter,
typename Interrupter>
3106 inline typename GridType::Ptr
3108 Interrupter& interrupter,
3111 float exteriorBandWidth,
3112 float interiorBandWidth,
3116 using GridTypePtr =
typename GridType::Ptr;
3117 using TreeType =
typename GridType::TreeType;
3118 using LeafNodeType =
typename TreeType::LeafNodeType;
3119 using ValueType =
typename GridType::ValueType;
3122 using Int32TreeType =
typename Int32GridType::TreeType;
3124 using BoolTreeType =
typename TreeType::template ValueConverter<bool>::Type;
3131 distGrid->setTransform(transform.
copy());
3133 ValueType exteriorWidth = ValueType(exteriorBandWidth);
3134 ValueType interiorWidth = ValueType(interiorBandWidth);
3138 if (!std::isfinite(exteriorWidth) || std::isnan(interiorWidth)) {
3139 std::stringstream msg;
3140 msg <<
"Illegal narrow band width: exterior = " << exteriorWidth
3141 <<
", interior = " << interiorWidth;
3146 const ValueType voxelSize = ValueType(transform.
voxelSize()[0]);
3148 if (!std::isfinite(voxelSize) ||
math::isZero(voxelSize)) {
3149 std::stringstream msg;
3150 msg <<
"Illegal transform, voxel size = " << voxelSize;
3156 exteriorWidth *= voxelSize;
3160 interiorWidth *= voxelSize;
3168 Int32GridType* indexGrid =
nullptr;
3170 typename Int32GridType::Ptr temporaryIndexGrid;
3172 if (polygonIndexGrid) {
3173 indexGrid = polygonIndexGrid;
3176 indexGrid = temporaryIndexGrid.get();
3179 indexGrid->newTree();
3180 indexGrid->setTransform(transform.
copy());
3182 if (computeSignedDistanceField) {
3186 interiorWidth = ValueType(0.0);
3189 TreeType& distTree = distGrid->tree();
3190 Int32TreeType& indexTree = indexGrid->tree();
3199 using DataTable = tbb::enumerable_thread_specific<typename VoxelizationDataType::Ptr>;
3205 const tbb::blocked_range<size_t> polygonRange(0, mesh.polygonCount());
3207 tbb::parallel_for(polygonRange, Voxelizer(data, mesh, &interrupter));
3209 for (
typename DataTable::iterator i = data.begin(); i != data.end(); ++i) {
3210 VoxelizationDataType& dataItem = **i;
3212 distTree, indexTree, dataItem.distTree, dataItem.indexTree);
3218 if (interrupter.wasInterrupted(30))
return distGrid;
3225 if (computeSignedDistanceField) {
3230 std::vector<LeafNodeType*> nodes;
3231 nodes.reserve(distTree.leafCount());
3232 distTree.getNodes(nodes);
3234 const tbb::blocked_range<size_t> nodeRange(0, nodes.size());
3239 tbb::parallel_for(nodeRange, SignOp(nodes, distTree, indexTree, mesh));
3241 if (interrupter.wasInterrupted(45))
return distGrid;
3244 if (removeIntersectingVoxels) {
3246 tbb::parallel_for(nodeRange,
3249 tbb::parallel_for(nodeRange,
3251 nodes, distTree, indexTree));
3258 if (interrupter.wasInterrupted(50))
return distGrid;
3260 if (distTree.activeVoxelCount() == 0) {
3262 distTree.root().setBackground(exteriorWidth,
false);
3268 std::vector<LeafNodeType*> nodes;
3269 nodes.reserve(distTree.leafCount());
3270 distTree.getNodes(nodes);
3272 tbb::parallel_for(tbb::blocked_range<size_t>(0, nodes.size()),
3274 nodes, voxelSize, !computeSignedDistanceField));
3278 if (computeSignedDistanceField) {
3279 distTree.root().setBackground(exteriorWidth,
false);
3285 if (interrupter.wasInterrupted(54))
return distGrid;
3292 const ValueType minBandWidth = voxelSize * ValueType(2.0);
3294 if (interiorWidth > minBandWidth || exteriorWidth > minBandWidth) {
3297 BoolTreeType maskTree(
false);
3300 std::vector<LeafNodeType*> nodes;
3301 nodes.reserve(distTree.leafCount());
3302 distTree.getNodes(nodes);
3305 tbb::parallel_reduce(tbb::blocked_range<size_t>(0, nodes.size()), op);
3311 float progress = 54.0f, step = 0.0f;
3313 2.0 * std::ceil((
std::max(interiorWidth, exteriorWidth) - minBandWidth) / voxelSize);
3315 if (estimated <
double(maxIterations)) {
3316 maxIterations = unsigned(estimated);
3317 step = 40.0f / float(maxIterations);
3320 std::vector<typename BoolTreeType::LeafNodeType*> maskNodes;
3325 if (interrupter.wasInterrupted(
int(progress)))
return distGrid;
3327 const size_t maskNodeCount = maskTree.leafCount();
3328 if (maskNodeCount == 0)
break;
3331 maskNodes.reserve(maskNodeCount);
3332 maskTree.getNodes(maskNodes);
3334 const tbb::blocked_range<size_t> range(0, maskNodes.size());
3336 tbb::parallel_for(range,
3340 mesh, exteriorWidth, interiorWidth, voxelSize);
3342 if ((++count) >= maxIterations)
break;
3347 if (interrupter.wasInterrupted(94))
return distGrid;
3349 if (!polygonIndexGrid) indexGrid->clear();
3357 if (computeSignedDistanceField && renormalizeValues) {
3359 std::vector<LeafNodeType*> nodes;
3360 nodes.reserve(distTree.leafCount());
3361 distTree.getNodes(nodes);
3363 std::unique_ptr<ValueType[]> buffer{
new ValueType[LeafNodeType::SIZE * nodes.size()]};
3365 const ValueType offset = ValueType(0.8 * voxelSize);
3367 tbb::parallel_for(tbb::blocked_range<size_t>(0, nodes.size()),
3370 tbb::parallel_for(tbb::blocked_range<size_t>(0, nodes.size()),
3372 distTree, nodes, buffer.get(), voxelSize));
3374 tbb::parallel_for(tbb::blocked_range<size_t>(0, nodes.size()),
3377 tbb::parallel_for(tbb::blocked_range<size_t>(0, nodes.size()),
3382 if (interrupter.wasInterrupted(99))
return distGrid;
3389 if (trimNarrowBand &&
std::min(interiorWidth, exteriorWidth) < voxelSize * ValueType(4.0)) {
3391 std::vector<LeafNodeType*> nodes;
3392 nodes.reserve(distTree.leafCount());
3393 distTree.getNodes(nodes);
3395 tbb::parallel_for(tbb::blocked_range<size_t>(0, nodes.size()),
3397 nodes, exteriorWidth, computeSignedDistanceField ? interiorWidth : exteriorWidth));
3400 distTree, exteriorWidth, computeSignedDistanceField ? -interiorWidth : -exteriorWidth);
3407 template <
typename Gr
idType,
typename MeshDataAdapter>
3408 inline typename GridType::Ptr
3412 float exteriorBandWidth,
3413 float interiorBandWidth,
3418 return meshToVolume<GridType>(nullInterrupter, mesh, transform,
3419 exteriorBandWidth, interiorBandWidth, flags, polygonIndexGrid);
3430 template<
typename Gr
idType,
typename Interrupter>
3431 inline typename std::enable_if<std::is_floating_point<typename GridType::ValueType>::value,
3432 typename GridType::Ptr>::type
3434 Interrupter& interrupter,
3435 const openvdb::math::Transform& xform,
3436 const std::vector<Vec3s>& points,
3437 const std::vector<Vec3I>& triangles,
3438 const std::vector<Vec4I>& quads,
3441 bool unsignedDistanceField =
false)
3443 if (points.empty()) {
3444 return typename GridType::Ptr(
new GridType(
typename GridType::ValueType(exBandWidth)));
3447 const size_t numPoints = points.size();
3448 std::unique_ptr<Vec3s[]> indexSpacePoints{
new Vec3s[numPoints]};
3451 tbb::parallel_for(tbb::blocked_range<size_t>(0, numPoints),
3452 mesh_to_volume_internal::TransformPoints<Vec3s>(
3453 &points[0], indexSpacePoints.get(), xform));
3457 if (quads.empty()) {
3459 QuadAndTriangleDataAdapter<Vec3s, Vec3I>
3460 mesh(indexSpacePoints.get(), numPoints, &triangles[0], triangles.size());
3462 return meshToVolume<GridType>(
3463 interrupter, mesh, xform, exBandWidth, inBandWidth, conversionFlags);
3465 }
else if (triangles.empty()) {
3467 QuadAndTriangleDataAdapter<Vec3s, Vec4I>
3468 mesh(indexSpacePoints.get(), numPoints, &quads[0], quads.size());
3470 return meshToVolume<GridType>(
3471 interrupter, mesh, xform, exBandWidth, inBandWidth, conversionFlags);
3476 const size_t numPrimitives = triangles.size() + quads.size();
3477 std::unique_ptr<Vec4I[]> prims{
new Vec4I[numPrimitives]};
3479 for (
size_t n = 0, N = triangles.size(); n < N; ++n) {
3480 const Vec3I& triangle = triangles[n];
3481 Vec4I& prim = prims[n];
3482 prim[0] = triangle[0];
3483 prim[1] = triangle[1];
3484 prim[2] = triangle[2];
3488 const size_t offset = triangles.size();
3489 for (
size_t n = 0, N = quads.size(); n < N; ++n) {
3490 prims[offset + n] = quads[n];
3493 QuadAndTriangleDataAdapter<Vec3s, Vec4I>
3494 mesh(indexSpacePoints.get(), numPoints, prims.get(), numPrimitives);
3496 return meshToVolume<GridType>(interrupter, mesh, xform,
3497 exBandWidth, inBandWidth, conversionFlags);
3503 template<
typename Gr
idType,
typename Interrupter>
3504 inline typename std::enable_if<!std::is_floating_point<typename GridType::ValueType>::value,
3505 typename GridType::Ptr>::type
3508 const math::Transform& ,
3509 const std::vector<Vec3s>& ,
3510 const std::vector<Vec3I>& ,
3511 const std::vector<Vec4I>& ,
3517 "mesh to volume conversion is supported only for scalar floating-point grids");
3527 template<
typename Gr
idType>
3528 inline typename GridType::Ptr
3530 const openvdb::math::Transform& xform,
3531 const std::vector<Vec3s>& points,
3532 const std::vector<Vec3I>& triangles,
3536 std::vector<Vec4I> quads(0);
3537 return doMeshConversion<GridType>(nullInterrupter, xform, points, triangles, quads,
3538 halfWidth, halfWidth);
3542 template<
typename Gr
idType,
typename Interrupter>
3543 inline typename GridType::Ptr
3545 Interrupter& interrupter,
3546 const openvdb::math::Transform& xform,
3547 const std::vector<Vec3s>& points,
3548 const std::vector<Vec3I>& triangles,
3551 std::vector<Vec4I> quads(0);
3552 return doMeshConversion<GridType>(interrupter, xform, points, triangles, quads,
3553 halfWidth, halfWidth);
3557 template<
typename Gr
idType>
3558 inline typename GridType::Ptr
3560 const openvdb::math::Transform& xform,
3561 const std::vector<Vec3s>& points,
3562 const std::vector<Vec4I>& quads,
3566 std::vector<Vec3I> triangles(0);
3567 return doMeshConversion<GridType>(nullInterrupter, xform, points, triangles, quads,
3568 halfWidth, halfWidth);
3572 template<
typename Gr
idType,
typename Interrupter>
3573 inline typename GridType::Ptr
3575 Interrupter& interrupter,
3576 const openvdb::math::Transform& xform,
3577 const std::vector<Vec3s>& points,
3578 const std::vector<Vec4I>& quads,
3581 std::vector<Vec3I> triangles(0);
3582 return doMeshConversion<GridType>(interrupter, xform, points, triangles, quads,
3583 halfWidth, halfWidth);
3587 template<
typename Gr
idType>
3588 inline typename GridType::Ptr
3590 const openvdb::math::Transform& xform,
3591 const std::vector<Vec3s>& points,
3592 const std::vector<Vec3I>& triangles,
3593 const std::vector<Vec4I>& quads,
3597 return doMeshConversion<GridType>(nullInterrupter, xform, points, triangles, quads,
3598 halfWidth, halfWidth);
3602 template<
typename Gr
idType,
typename Interrupter>
3603 inline typename GridType::Ptr
3605 Interrupter& interrupter,
3606 const openvdb::math::Transform& xform,
3607 const std::vector<Vec3s>& points,
3608 const std::vector<Vec3I>& triangles,
3609 const std::vector<Vec4I>& quads,
3612 return doMeshConversion<GridType>(interrupter, xform, points, triangles, quads,
3613 halfWidth, halfWidth);
3617 template<
typename Gr
idType>
3618 inline typename GridType::Ptr
3620 const openvdb::math::Transform& xform,
3621 const std::vector<Vec3s>& points,
3622 const std::vector<Vec3I>& triangles,
3623 const std::vector<Vec4I>& quads,
3628 return doMeshConversion<GridType>(nullInterrupter, xform, points, triangles,
3629 quads, exBandWidth, inBandWidth);
3633 template<
typename Gr
idType,
typename Interrupter>
3634 inline typename GridType::Ptr
3636 Interrupter& interrupter,
3637 const openvdb::math::Transform& xform,
3638 const std::vector<Vec3s>& points,
3639 const std::vector<Vec3I>& triangles,
3640 const std::vector<Vec4I>& quads,
3644 return doMeshConversion<GridType>(interrupter, xform, points, triangles,
3645 quads, exBandWidth, inBandWidth);
3649 template<
typename Gr
idType>
3650 inline typename GridType::Ptr
3652 const openvdb::math::Transform& xform,
3653 const std::vector<Vec3s>& points,
3654 const std::vector<Vec3I>& triangles,
3655 const std::vector<Vec4I>& quads,
3659 return doMeshConversion<GridType>(nullInterrupter, xform, points, triangles, quads,
3660 bandWidth, bandWidth,
true);
3664 template<
typename Gr
idType,
typename Interrupter>
3665 inline typename GridType::Ptr
3667 Interrupter& interrupter,
3668 const openvdb::math::Transform& xform,
3669 const std::vector<Vec3s>& points,
3670 const std::vector<Vec3I>& triangles,
3671 const std::vector<Vec4I>& quads,
3674 return doMeshConversion<GridType>(interrupter, xform, points, triangles, quads,
3675 bandWidth, bandWidth,
true);
3683 inline std::ostream&
3686 ostr <<
"{[ " << rhs.
mXPrim <<
", " << rhs.
mXDist <<
"]";
3687 ostr <<
" [ " << rhs.
mYPrim <<
", " << rhs.
mYDist <<
"]";
3688 ostr <<
" [ " << rhs.
mZPrim <<
", " << rhs.
mZDist <<
"]}";
3693 inline MeshToVoxelEdgeData::EdgeData
3708 const std::vector<Vec3s>& pointList,
3709 const std::vector<Vec4I>& polygonList);
3711 void run(
bool threaded =
true);
3714 inline void operator() (
const tbb::blocked_range<size_t> &range);
3722 struct Primitive {
Vec3d a, b, c, d;
Int32 index; };
3724 template<
bool IsQuad>
3725 inline void voxelize(
const Primitive&);
3727 template<
bool IsQuad>
3728 inline bool evalPrimitive(
const Coord&,
const Primitive&);
3730 inline bool rayTriangleIntersection(
const Vec3d& origin,
const Vec3d& dir,
3737 const std::vector<Vec3s>& mPointList;
3738 const std::vector<Vec4I>& mPolygonList;
3741 using IntTreeT = TreeType::ValueConverter<Int32>::Type;
3742 IntTreeT mLastPrimTree;
3748 MeshToVoxelEdgeData::GenEdgeData::GenEdgeData(
3749 const std::vector<Vec3s>& pointList,
3750 const std::vector<Vec4I>& polygonList)
3753 , mPointList(pointList)
3754 , mPolygonList(polygonList)
3756 , mLastPrimAccessor(mLastPrimTree)
3765 , mPointList(rhs.mPointList)
3766 , mPolygonList(rhs.mPolygonList)
3768 , mLastPrimAccessor(mLastPrimTree)
3777 tbb::parallel_reduce(tbb::blocked_range<size_t>(0, mPolygonList.size()), *
this);
3779 (*this)(tbb::blocked_range<size_t>(0, mPolygonList.size()));
3788 using NodeChainType = RootNodeType::NodeChainType;
3789 static_assert(boost::mpl::size<NodeChainType>::value > 1,
"expected tree height > 1");
3790 using InternalNodeType = boost::mpl::at<NodeChainType, boost::mpl::int_<1> >::type;
3798 for ( ; leafIt; ++leafIt) {
3799 ijk = leafIt->origin();
3805 mAccessor.addLeaf(rhs.mAccessor.
probeLeaf(ijk));
3806 InternalNodeType* node = rhs.mAccessor.
getNode<InternalNodeType>();
3808 rhs.mAccessor.
clear();
3818 if (!lhsLeafPt->isValueOn(offset)) {
3819 lhsLeafPt->setValueOn(offset, rhsValue);
3851 for (
size_t n = range.begin(); n < range.end(); ++n) {
3853 const Vec4I& verts = mPolygonList[n];
3855 prim.index =
Int32(n);
3856 prim.a =
Vec3d(mPointList[verts[0]]);
3857 prim.b =
Vec3d(mPointList[verts[1]]);
3858 prim.c =
Vec3d(mPointList[verts[2]]);
3861 prim.d =
Vec3d(mPointList[verts[3]]);
3862 voxelize<true>(prim);
3864 voxelize<false>(prim);
3870 template<
bool IsQuad>
3872 MeshToVoxelEdgeData::GenEdgeData::voxelize(
const Primitive& prim)
3874 std::deque<Coord> coordList;
3878 coordList.push_back(ijk);
3880 evalPrimitive<IsQuad>(ijk, prim);
3882 while (!coordList.empty()) {
3884 ijk = coordList.back();
3885 coordList.pop_back();
3887 for (
Int32 i = 0; i < 26; ++i) {
3890 if (prim.index != mLastPrimAccessor.getValue(nijk)) {
3891 mLastPrimAccessor.setValue(nijk, prim.index);
3892 if(evalPrimitive<IsQuad>(nijk, prim)) coordList.push_back(nijk);
3899 template<
bool IsQuad>
3901 MeshToVoxelEdgeData::GenEdgeData::evalPrimitive(
const Coord& ijk,
const Primitive& prim)
3903 Vec3d uvw, org(ijk[0], ijk[1], ijk[2]);
3904 bool intersecting =
false;
3908 mAccessor.probeValue(ijk, edgeData);
3911 double dist = (org -
3914 if (rayTriangleIntersection(org,
Vec3d(1.0, 0.0, 0.0), prim.a, prim.c, prim.b, t)) {
3915 if (t < edgeData.mXDist) {
3916 edgeData.mXDist = float(t);
3917 edgeData.mXPrim = prim.index;
3918 intersecting =
true;
3922 if (rayTriangleIntersection(org,
Vec3d(0.0, 1.0, 0.0), prim.a, prim.c, prim.b, t)) {
3923 if (t < edgeData.mYDist) {
3924 edgeData.mYDist = float(t);
3925 edgeData.mYPrim = prim.index;
3926 intersecting =
true;
3930 if (rayTriangleIntersection(org,
Vec3d(0.0, 0.0, 1.0), prim.a, prim.c, prim.b, t)) {
3931 if (t < edgeData.mZDist) {
3932 edgeData.mZDist = float(t);
3933 edgeData.mZPrim = prim.index;
3934 intersecting =
true;
3940 double secondDist = (org -
3943 if (secondDist < dist) dist = secondDist;
3945 if (rayTriangleIntersection(org,
Vec3d(1.0, 0.0, 0.0), prim.a, prim.d, prim.c, t)) {
3946 if (t < edgeData.mXDist) {
3947 edgeData.mXDist = float(t);
3948 edgeData.mXPrim = prim.index;
3949 intersecting =
true;
3953 if (rayTriangleIntersection(org,
Vec3d(0.0, 1.0, 0.0), prim.a, prim.d, prim.c, t)) {
3954 if (t < edgeData.mYDist) {
3955 edgeData.mYDist = float(t);
3956 edgeData.mYPrim = prim.index;
3957 intersecting =
true;
3961 if (rayTriangleIntersection(org,
Vec3d(0.0, 0.0, 1.0), prim.a, prim.d, prim.c, t)) {
3962 if (t < edgeData.mZDist) {
3963 edgeData.mZDist = float(t);
3964 edgeData.mZPrim = prim.index;
3965 intersecting =
true;
3970 if (intersecting) mAccessor.setValue(ijk, edgeData);
3972 return (dist < 0.86602540378443861);
3977 MeshToVoxelEdgeData::GenEdgeData::rayTriangleIntersection(
3988 double divisor = s1.
dot(e1);
3989 if (!(std::abs(divisor) > 0.0))
return false;
3993 double inv_divisor = 1.0 / divisor;
3994 Vec3d d = origin - a;
3995 double b1 = d.
dot(s1) * inv_divisor;
3997 if (b1 < 0.0 || b1 > 1.0)
return false;
4000 double b2 = dir.
dot(s2) * inv_divisor;
4002 if (b2 < 0.0 || (b1 + b2) > 1.0)
return false;
4006 t = e2.dot(s2) * inv_divisor;
4007 return (t < 0.0) ? false :
true;
4023 const std::vector<Vec3s>& pointList,
4024 const std::vector<Vec4I>& polygonList)
4038 std::vector<Vec3d>& points,
4039 std::vector<Index32>& primitives)
4049 point[0] = double(coord[0]) + data.
mXDist;
4050 point[1] = double(coord[1]);
4051 point[2] = double(coord[2]);
4053 points.push_back(point);
4054 primitives.push_back(data.
mXPrim);
4058 point[0] = double(coord[0]);
4059 point[1] = double(coord[1]) + data.
mYDist;
4060 point[2] = double(coord[2]);
4062 points.push_back(point);
4063 primitives.push_back(data.
mYPrim);
4067 point[0] = double(coord[0]);
4068 point[1] = double(coord[1]);
4069 point[2] = double(coord[2]) + data.
mZDist;
4071 points.push_back(point);
4072 primitives.push_back(data.
mZPrim);
4082 point[0] = double(coord[0]);
4083 point[1] = double(coord[1]) + data.
mYDist;
4084 point[2] = double(coord[2]);
4086 points.push_back(point);
4087 primitives.push_back(data.
mYPrim);
4091 point[0] = double(coord[0]);
4092 point[1] = double(coord[1]);
4093 point[2] = double(coord[2]) + data.
mZDist;
4095 points.push_back(point);
4096 primitives.push_back(data.
mZPrim);
4104 point[0] = double(coord[0]);
4105 point[1] = double(coord[1]) + data.
mYDist;
4106 point[2] = double(coord[2]);
4108 points.push_back(point);
4109 primitives.push_back(data.
mYPrim);
4118 point[0] = double(coord[0]) + data.
mXDist;
4119 point[1] = double(coord[1]);
4120 point[2] = double(coord[2]);
4122 points.push_back(point);
4123 primitives.push_back(data.
mXPrim);
4127 point[0] = double(coord[0]);
4128 point[1] = double(coord[1]) + data.
mYDist;
4129 point[2] = double(coord[2]);
4131 points.push_back(point);
4132 primitives.push_back(data.
mYPrim);
4142 point[0] = double(coord[0]) + data.
mXDist;
4143 point[1] = double(coord[1]);
4144 point[2] = double(coord[2]);
4146 points.push_back(point);
4147 primitives.push_back(data.
mXPrim);
4156 point[0] = double(coord[0]) + data.
mXDist;
4157 point[1] = double(coord[1]);
4158 point[2] = double(coord[2]);
4160 points.push_back(point);
4161 primitives.push_back(data.
mXPrim);
4165 point[0] = double(coord[0]);
4166 point[1] = double(coord[1]);
4167 point[2] = double(coord[2]) + data.
mZDist;
4169 points.push_back(point);
4170 primitives.push_back(data.
mZPrim);
4179 point[0] = double(coord[0]);
4180 point[1] = double(coord[1]);
4181 point[2] = double(coord[2]) + data.
mZDist;
4183 points.push_back(point);
4184 primitives.push_back(data.
mZPrim);
4190 template<
typename Gr
idType,
typename VecType>
4191 inline typename GridType::Ptr
4193 const openvdb::math::Transform& xform,
4194 typename VecType::ValueType halfWidth)
4200 points[0] =
Vec3s(pmin[0], pmin[1], pmin[2]);
4201 points[1] =
Vec3s(pmin[0], pmin[1], pmax[2]);
4202 points[2] =
Vec3s(pmax[0], pmin[1], pmax[2]);
4203 points[3] =
Vec3s(pmax[0], pmin[1], pmin[2]);
4204 points[4] =
Vec3s(pmin[0], pmax[1], pmin[2]);
4205 points[5] =
Vec3s(pmin[0], pmax[1], pmax[2]);
4206 points[6] =
Vec3s(pmax[0], pmax[1], pmax[2]);
4207 points[7] =
Vec3s(pmax[0], pmax[1], pmin[2]);
4210 faces[0] =
Vec4I(0, 1, 2, 3);
4211 faces[1] =
Vec4I(7, 6, 5, 4);
4212 faces[2] =
Vec4I(4, 5, 1, 0);
4213 faces[3] =
Vec4I(6, 7, 3, 2);
4214 faces[4] =
Vec4I(0, 3, 7, 4);
4215 faces[5] =
Vec4I(1, 5, 6, 2);
4219 return meshToVolume<GridType>(mesh, xform, halfWidth, halfWidth);
4227 #endif // OPENVDB_TOOLS_MESH_TO_VOLUME_HAS_BEEN_INCLUDED