Point Cloud Library (PCL) 1.13.0
Loading...
Searching...
No Matches
sac_model_cone.hpp
1/*
2 * Software License Agreement (BSD License)
3 *
4 * Point Cloud Library (PCL) - www.pointclouds.org
5 * Copyright (c) 2009-2012, Willow Garage, Inc.
6 * Copyright (c) 2012-, Open Perception, Inc.
7 *
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 *
14 * * Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * * Redistributions in binary form must reproduce the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer in the documentation and/or other materials provided
19 * with the distribution.
20 * * Neither the name of the copyright holder(s) nor the names of its
21 * contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
28 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
30 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
32 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
34 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 *
37 */
38
39#ifndef PCL_SAMPLE_CONSENSUS_IMPL_SAC_MODEL_CONE_H_
40#define PCL_SAMPLE_CONSENSUS_IMPL_SAC_MODEL_CONE_H_
41
42#include <unsupported/Eigen/NonLinearOptimization> // for LevenbergMarquardt
43#include <pcl/sample_consensus/sac_model_cone.h>
44#include <pcl/common/common.h> // for getAngle3D
45#include <pcl/common/concatenate.h>
46
47//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
48template <typename PointT, typename PointNT> bool
50{
51 if (samples.size () != sample_size_)
52 {
53 PCL_ERROR ("[pcl::SampleConsensusModelCone::isSampleGood] Wrong number of samples (is %lu, should be %lu)!\n", samples.size (), sample_size_);
54 return (false);
55 }
56 return (true);
57}
58
59//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
60template <typename PointT, typename PointNT> bool
62 const Indices &samples, Eigen::VectorXf &model_coefficients) const
63{
64 // Make sure that the samples are valid
65 if (!isSampleGood (samples))
66 {
67 PCL_ERROR ("[pcl::SampleConsensusModelCone::computeModelCoefficients] Invalid set of samples given\n");
68 return (false);
69 }
70
71 if (!normals_)
72 {
73 PCL_ERROR ("[pcl::SampleConsensusModelCone::computeModelCoefficients] No input dataset containing normals was given!\n");
74 return (false);
75 }
76
77 Eigen::Vector4f p1 ((*input_)[samples[0]].x, (*input_)[samples[0]].y, (*input_)[samples[0]].z, 0.0f);
78 Eigen::Vector4f p2 ((*input_)[samples[1]].x, (*input_)[samples[1]].y, (*input_)[samples[1]].z, 0.0f);
79 Eigen::Vector4f p3 ((*input_)[samples[2]].x, (*input_)[samples[2]].y, (*input_)[samples[2]].z, 0.0f);
80
81 Eigen::Vector4f n1 ((*normals_)[samples[0]].normal[0], (*normals_)[samples[0]].normal[1], (*normals_)[samples[0]].normal[2], 0.0f);
82 Eigen::Vector4f n2 ((*normals_)[samples[1]].normal[0], (*normals_)[samples[1]].normal[1], (*normals_)[samples[1]].normal[2], 0.0f);
83 Eigen::Vector4f n3 ((*normals_)[samples[2]].normal[0], (*normals_)[samples[2]].normal[1], (*normals_)[samples[2]].normal[2], 0.0f);
84
85 //calculate apex (intersection of the three planes defined by points and belonging normals
86 Eigen::Vector4f ortho12 = n1.cross3(n2);
87 Eigen::Vector4f ortho23 = n2.cross3(n3);
88 Eigen::Vector4f ortho31 = n3.cross3(n1);
89
90 float denominator = n1.dot(ortho23);
91
92 float d1 = p1.dot (n1);
93 float d2 = p2.dot (n2);
94 float d3 = p3.dot (n3);
95
96 Eigen::Vector4f apex = (d1 * ortho23 + d2 * ortho31 + d3 * ortho12) / denominator;
97
98 //compute axis (normal of plane defined by: { apex+(p1-apex)/(||p1-apex||), apex+(p2-apex)/(||p2-apex||), apex+(p3-apex)/(||p3-apex||)}
99 Eigen::Vector4f ap1 = p1 - apex;
100 Eigen::Vector4f ap2 = p2 - apex;
101 Eigen::Vector4f ap3 = p3 - apex;
102
103 Eigen::Vector4f np1 = apex + (ap1/ap1.norm ());
104 Eigen::Vector4f np2 = apex + (ap2/ap2.norm ());
105 Eigen::Vector4f np3 = apex + (ap3/ap3.norm ());
106
107 Eigen::Vector4f np1np2 = np2 - np1;
108 Eigen::Vector4f np1np3 = np3 - np1;
109
110 Eigen::Vector4f axis_dir = np1np2.cross3 (np1np3);
111 axis_dir.normalize ();
112
113 // normalize the vector (apex->p) for opening angle calculation
114 ap1.normalize ();
115 ap2.normalize ();
116 ap3.normalize ();
117
118 //compute opening angle
119 float opening_angle = ( std::acos (ap1.dot (axis_dir)) + std::acos (ap2.dot (axis_dir)) + std::acos (ap3.dot (axis_dir)) ) / 3.0f;
120
121 model_coefficients.resize (model_size_);
122 // model_coefficients.template head<3> () = line_pt.template head<3> ();
123 model_coefficients[0] = apex[0];
124 model_coefficients[1] = apex[1];
125 model_coefficients[2] = apex[2];
126 // model_coefficients.template segment<3> (3) = line_dir.template head<3> ();
127 model_coefficients[3] = axis_dir[0];
128 model_coefficients[4] = axis_dir[1];
129 model_coefficients[5] = axis_dir[2];
130 // cone radius
131 model_coefficients[6] = opening_angle;
132
133 if (model_coefficients[6] != -std::numeric_limits<double>::max() && model_coefficients[6] < min_angle_)
134 return (false);
135 if (model_coefficients[6] != std::numeric_limits<double>::max() && model_coefficients[6] > max_angle_)
136 return (false);
137
138 PCL_DEBUG ("[pcl::SampleConsensusModelCone::computeModelCoefficients] Model is (%g,%g,%g,%g,%g,%g,%g).\n",
139 model_coefficients[0], model_coefficients[1], model_coefficients[2], model_coefficients[3],
140 model_coefficients[4], model_coefficients[5], model_coefficients[6]);
141 return (true);
142}
143
144//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
145template <typename PointT, typename PointNT> void
147 const Eigen::VectorXf &model_coefficients, std::vector<double> &distances) const
148{
149 // Check if the model is valid given the user constraints
150 if (!isModelValid (model_coefficients))
151 {
152 distances.clear ();
153 return;
154 }
155
156 distances.resize (indices_->size ());
157
158 Eigen::Vector4f apex (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0.0f);
159 Eigen::Vector4f axis_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0.0f);
160 const float sin_opening_angle = std::sin (model_coefficients[6]),
161 cos_opening_angle = std::cos (model_coefficients[6]),
162 tan_opening_angle = std::tan (model_coefficients[6]);
163
164 float apexdotdir = apex.dot (axis_dir);
165 float dirdotdir = 1.0f / axis_dir.dot (axis_dir);
166 // Iterate through the 3d points and calculate the distances from them to the cone
167 for (std::size_t i = 0; i < indices_->size (); ++i)
168 {
169 Eigen::Vector4f pt ((*input_)[(*indices_)[i]].x, (*input_)[(*indices_)[i]].y, (*input_)[(*indices_)[i]].z, 0.0f);
170
171 // Calculate the point's projection on the cone axis
172 float k = (pt.dot (axis_dir) - apexdotdir) * dirdotdir;
173 Eigen::Vector4f pt_proj = apex + k * axis_dir;
174
175 // Calculate the actual radius of the cone at the level of the projected point
176 Eigen::Vector4f height = apex - pt_proj;
177 float actual_cone_radius = tan_opening_angle * height.norm ();
178
179 // Approximate the distance from the point to the cone as the difference between
180 // dist(point,cone_axis) and actual cone radius
181 const double weighted_euclid_dist = (1.0 - normal_distance_weight_) * std::abs (pointToAxisDistance (pt, model_coefficients) - actual_cone_radius);
182
183 // Calculate the direction of the point from center
184 Eigen::Vector4f dir = pt - pt_proj;
185 dir.normalize ();
186
187 // Calculate the cones perfect normals
188 height.normalize ();
189 Eigen::Vector4f cone_normal = sin_opening_angle * height + cos_opening_angle * dir;
190
191 // Calculate the angular distance between the point normal and the (dir=pt_proj->pt) vector
192 Eigen::Vector4f n ((*normals_)[(*indices_)[i]].normal[0], (*normals_)[(*indices_)[i]].normal[1], (*normals_)[(*indices_)[i]].normal[2], 0.0f);
193 double d_normal = std::abs (getAngle3D (n, cone_normal));
194 d_normal = (std::min) (d_normal, M_PI - d_normal);
195
196 distances[i] = std::abs (normal_distance_weight_ * d_normal + weighted_euclid_dist);
197 }
199
200//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
201template <typename PointT, typename PointNT> void
203 const Eigen::VectorXf &model_coefficients, const double threshold, Indices &inliers)
204{
205 // Check if the model is valid given the user constraints
206 if (!isModelValid (model_coefficients))
207 {
208 inliers.clear ();
209 return;
210 }
211
212 inliers.clear ();
213 error_sqr_dists_.clear ();
214 inliers.reserve (indices_->size ());
215 error_sqr_dists_.reserve (indices_->size ());
216
217 Eigen::Vector4f apex (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0.0f);
218 Eigen::Vector4f axis_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0.0f);
219 const float sin_opening_angle = std::sin (model_coefficients[6]),
220 cos_opening_angle = std::cos (model_coefficients[6]),
221 tan_opening_angle = std::tan (model_coefficients[6]);
222
223 float apexdotdir = apex.dot (axis_dir);
224 float dirdotdir = 1.0f / axis_dir.dot (axis_dir);
225 // Iterate through the 3d points and calculate the distances from them to the cone
226 for (std::size_t i = 0; i < indices_->size (); ++i)
227 {
228 Eigen::Vector4f pt ((*input_)[(*indices_)[i]].x, (*input_)[(*indices_)[i]].y, (*input_)[(*indices_)[i]].z, 0.0f);
229
230 // Calculate the point's projection on the cone axis
231 float k = (pt.dot (axis_dir) - apexdotdir) * dirdotdir;
232 Eigen::Vector4f pt_proj = apex + k * axis_dir;
233
234 // Calculate the actual radius of the cone at the level of the projected point
235 Eigen::Vector4f height = apex - pt_proj;
236 double actual_cone_radius = tan_opening_angle * height.norm ();
238 // Approximate the distance from the point to the cone as the difference between
239 // dist(point,cone_axis) and actual cone radius
240 const double weighted_euclid_dist = (1.0 - normal_distance_weight_) * std::abs (pointToAxisDistance (pt, model_coefficients) - actual_cone_radius);
241 if (weighted_euclid_dist > threshold) // Early termination: cannot be an inlier
242 continue;
243
244 // Calculate the direction of the point from center
245 Eigen::Vector4f pp_pt_dir = pt - pt_proj;
246 pp_pt_dir.normalize ();
247
248 // Calculate the cones perfect normals
249 height.normalize ();
250 Eigen::Vector4f cone_normal = sin_opening_angle * height + cos_opening_angle * pp_pt_dir;
251
252 // Calculate the angular distance between the point normal and the (dir=pt_proj->pt) vector
253 Eigen::Vector4f n ((*normals_)[(*indices_)[i]].normal[0], (*normals_)[(*indices_)[i]].normal[1], (*normals_)[(*indices_)[i]].normal[2], 0.0f);
254 double d_normal = std::abs (getAngle3D (n, cone_normal));
255 d_normal = (std::min) (d_normal, M_PI - d_normal);
256
257 double distance = std::abs (normal_distance_weight_ * d_normal + weighted_euclid_dist);
258
259 if (distance < threshold)
261 // Returns the indices of the points whose distances are smaller than the threshold
262 inliers.push_back ((*indices_)[i]);
263 error_sqr_dists_.push_back (distance);
264 }
265 }
266}
267
268//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
269template <typename PointT, typename PointNT> std::size_t
271 const Eigen::VectorXf &model_coefficients, const double threshold) const
272{
273
274 // Check if the model is valid given the user constraints
275 if (!isModelValid (model_coefficients))
276 return (0);
278 std::size_t nr_p = 0;
279
280 Eigen::Vector4f apex (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0.0f);
281 Eigen::Vector4f axis_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0.0f);
282 const float sin_opening_angle = std::sin (model_coefficients[6]),
283 cos_opening_angle = std::cos (model_coefficients[6]),
284 tan_opening_angle = std::tan (model_coefficients[6]);
285
286 float apexdotdir = apex.dot (axis_dir);
287 float dirdotdir = 1.0f / axis_dir.dot (axis_dir);
288 // Iterate through the 3d points and calculate the distances from them to the cone
289 for (std::size_t i = 0; i < indices_->size (); ++i)
291 Eigen::Vector4f pt ((*input_)[(*indices_)[i]].x, (*input_)[(*indices_)[i]].y, (*input_)[(*indices_)[i]].z, 0.0f);
292
293 // Calculate the point's projection on the cone axis
294 float k = (pt.dot (axis_dir) - apexdotdir) * dirdotdir;
295 Eigen::Vector4f pt_proj = apex + k * axis_dir;
296
297 // Calculate the actual radius of the cone at the level of the projected point
298 Eigen::Vector4f height = apex - pt_proj;
299 double actual_cone_radius = tan_opening_angle * height.norm ();
300
301 // Approximate the distance from the point to the cone as the difference between
302 // dist(point,cone_axis) and actual cone radius
303 const double weighted_euclid_dist = (1.0 - normal_distance_weight_) * std::abs (pointToAxisDistance (pt, model_coefficients) - actual_cone_radius);
304 if (weighted_euclid_dist > threshold) // Early termination: cannot be an inlier
305 continue;
306
307 // Calculate the direction of the point from center
308 Eigen::Vector4f pp_pt_dir = pt - pt_proj;
309 pp_pt_dir.normalize ();
310
311 // Calculate the cones perfect normals
312 height.normalize ();
313 Eigen::Vector4f cone_normal = sin_opening_angle * height + cos_opening_angle * pp_pt_dir;
314
315 // Calculate the angular distance between the point normal and the (dir=pt_proj->pt) vector
316 Eigen::Vector4f n ((*normals_)[(*indices_)[i]].normal[0], (*normals_)[(*indices_)[i]].normal[1], (*normals_)[(*indices_)[i]].normal[2], 0.0f);
317 double d_normal = std::abs (getAngle3D (n, cone_normal));
318 d_normal = (std::min) (d_normal, M_PI - d_normal);
319
320 if (std::abs (normal_distance_weight_ * d_normal + weighted_euclid_dist) < threshold)
321 nr_p++;
322 }
323 return (nr_p);
324}
325
326//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
327template <typename PointT, typename PointNT> void
329 const Indices &inliers, const Eigen::VectorXf &model_coefficients, Eigen::VectorXf &optimized_coefficients) const
330{
331 optimized_coefficients = model_coefficients;
332
333 // Needs a set of valid model coefficients
334 if (!isModelValid (model_coefficients))
335 {
336 PCL_ERROR ("[pcl::SampleConsensusModelCone::optimizeModelCoefficients] Given model is invalid!\n");
337 return;
338 }
339
340 // Need more than the minimum sample size to make a difference
341 if (inliers.size () <= sample_size_)
342 {
343 PCL_ERROR ("[pcl::SampleConsensusModelCone:optimizeModelCoefficients] Not enough inliers found to optimize model coefficients (%lu)! Returning the same coefficients.\n", inliers.size ());
344 return;
345 }
346
347 OptimizationFunctor functor (this, inliers);
348 Eigen::NumericalDiff<OptimizationFunctor > num_diff (functor);
349 Eigen::LevenbergMarquardt<Eigen::NumericalDiff<OptimizationFunctor>, float> lm (num_diff);
350 int info = lm.minimize (optimized_coefficients);
351
352 // Compute the L2 norm of the residuals
353 PCL_DEBUG ("[pcl::SampleConsensusModelCone::optimizeModelCoefficients] LM solver finished with exit code %i, having a residual norm of %g. \nInitial solution: %g %g %g %g %g %g %g \nFinal solution: %g %g %g %g %g %g %g\n",
354 info, lm.fvec.norm (), model_coefficients[0], model_coefficients[1], model_coefficients[2], model_coefficients[3],
355 model_coefficients[4], model_coefficients[5], model_coefficients[6], optimized_coefficients[0], optimized_coefficients[1], optimized_coefficients[2], optimized_coefficients[3], optimized_coefficients[4], optimized_coefficients[5], optimized_coefficients[6]);
356
357 Eigen::Vector3f line_dir (optimized_coefficients[3], optimized_coefficients[4], optimized_coefficients[5]);
358 line_dir.normalize ();
359 optimized_coefficients[3] = line_dir[0];
360 optimized_coefficients[4] = line_dir[1];
361 optimized_coefficients[5] = line_dir[2];
362}
363
364//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
365template <typename PointT, typename PointNT> void
367 const Indices &inliers, const Eigen::VectorXf &model_coefficients, PointCloud &projected_points, bool copy_data_fields) const
368{
369 // Needs a valid set of model coefficients
370 if (!isModelValid (model_coefficients))
371 {
372 PCL_ERROR ("[pcl::SampleConsensusModelCone::projectPoints] Given model is invalid!\n");
373 return;
374 }
375
376 projected_points.header = input_->header;
377 projected_points.is_dense = input_->is_dense;
378
379 Eigen::Vector4f apex (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0.0f);
380 Eigen::Vector4f axis_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0.0f);
381 const float tan_opening_angle = std::tan (model_coefficients[6]);
382
383 float apexdotdir = apex.dot (axis_dir);
384 float dirdotdir = 1.0f / axis_dir.dot (axis_dir);
385
386 // Copy all the data fields from the input cloud to the projected one?
387 if (copy_data_fields)
388 {
389 // Allocate enough space and copy the basics
390 projected_points.resize (input_->size ());
391 projected_points.width = input_->width;
392 projected_points.height = input_->height;
393
394 using FieldList = typename pcl::traits::fieldList<PointT>::type;
395 // Iterate over each point
396 for (std::size_t i = 0; i < projected_points.size (); ++i)
397 // Iterate over each dimension
398 pcl::for_each_type <FieldList> (NdConcatenateFunctor <PointT, PointT> ((*input_)[i], projected_points[i]));
399
400 // Iterate through the 3d points and calculate the distances from them to the cone
401 for (const auto &inlier : inliers)
402 {
403 Eigen::Vector4f pt ((*input_)[inlier].x,
404 (*input_)[inlier].y,
405 (*input_)[inlier].z,
406 1);
407
408 float k = (pt.dot (axis_dir) - apexdotdir) * dirdotdir;
409
410 pcl::Vector4fMap pp = projected_points[inlier].getVector4fMap ();
411 pp.matrix () = apex + k * axis_dir;
412
413 Eigen::Vector4f dir = pt - pp;
414 dir.normalize ();
415
416 // Calculate the actual radius of the cone at the level of the projected point
417 Eigen::Vector4f height = apex - pp;
418 float actual_cone_radius = tan_opening_angle * height.norm ();
419
420 // Calculate the projection of the point onto the cone
421 pp += dir * actual_cone_radius;
422 }
423 }
424 else
425 {
426 // Allocate enough space and copy the basics
427 projected_points.resize (inliers.size ());
428 projected_points.width = inliers.size ();
429 projected_points.height = 1;
430
431 using FieldList = typename pcl::traits::fieldList<PointT>::type;
432 // Iterate over each point
433 for (std::size_t i = 0; i < inliers.size (); ++i)
434 // Iterate over each dimension
435 pcl::for_each_type <FieldList> (NdConcatenateFunctor <PointT, PointT> ((*input_)[inliers[i]], projected_points[i]));
436
437 // Iterate through the 3d points and calculate the distances from them to the cone
438 for (std::size_t i = 0; i < inliers.size (); ++i)
439 {
440 pcl::Vector4fMap pp = projected_points[i].getVector4fMap ();
441 pcl::Vector4fMapConst pt = (*input_)[inliers[i]].getVector4fMap ();
442
443 float k = (pt.dot (axis_dir) - apexdotdir) * dirdotdir;
444 // Calculate the projection of the point on the line
445 pp.matrix () = apex + k * axis_dir;
446
447 Eigen::Vector4f dir = pt - pp;
448 dir.normalize ();
449
450 // Calculate the actual radius of the cone at the level of the projected point
451 Eigen::Vector4f height = apex - pp;
452 float actual_cone_radius = tan_opening_angle * height.norm ();
453
454 // Calculate the projection of the point onto the cone
455 pp += dir * actual_cone_radius;
456 }
457 }
458}
459
460//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
461template <typename PointT, typename PointNT> bool
463 const std::set<index_t> &indices, const Eigen::VectorXf &model_coefficients, const double threshold) const
464{
465 // Needs a valid model coefficients
466 if (!isModelValid (model_coefficients))
467 {
468 PCL_ERROR ("[pcl::SampleConsensusModelCone::doSamplesVerifyModel] Given model is invalid!\n");
469 return (false);
470 }
471
472 Eigen::Vector4f apex (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0.0f);
473 Eigen::Vector4f axis_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0.0f);
474 const float tan_opening_angle = std::tan (model_coefficients[6]);
475
476 float apexdotdir = apex.dot (axis_dir);
477 float dirdotdir = 1.0f / axis_dir.dot (axis_dir);
478
479 // Iterate through the 3d points and calculate the distances from them to the cone
480 for (const auto &index : indices)
481 {
482 Eigen::Vector4f pt ((*input_)[index].x, (*input_)[index].y, (*input_)[index].z, 0.0f);
483
484 // Calculate the point's projection on the cone axis
485 float k = (pt.dot (axis_dir) - apexdotdir) * dirdotdir;
486 Eigen::Vector4f pt_proj = apex + k * axis_dir;
487 Eigen::Vector4f dir = pt - pt_proj;
488 dir.normalize ();
489
490 // Calculate the actual radius of the cone at the level of the projected point
491 Eigen::Vector4f height = apex - pt_proj;
492 double actual_cone_radius = tan_opening_angle * height.norm ();
493
494 // Approximate the distance from the point to the cone as the difference between
495 // dist(point,cone_axis) and actual cone radius
496 if (std::abs (static_cast<double>(pointToAxisDistance (pt, model_coefficients) - actual_cone_radius)) > threshold)
497 return (false);
498 }
499
500 return (true);
501}
502
503//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
504template <typename PointT, typename PointNT> double
506 const Eigen::Vector4f &pt, const Eigen::VectorXf &model_coefficients) const
507{
508 Eigen::Vector4f apex (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0.0f);
509 Eigen::Vector4f axis_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0.0f);
510 return sqrt(pcl::sqrPointToLineDistance (pt, apex, axis_dir));
511}
512
513//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
514template <typename PointT, typename PointNT> bool
515pcl::SampleConsensusModelCone<PointT, PointNT>::isModelValid (const Eigen::VectorXf &model_coefficients) const
516{
517 if (!SampleConsensusModel<PointT>::isModelValid (model_coefficients))
518 return (false);
519
520 // Check against template, if given
521 if (eps_angle_ > 0.0)
522 {
523 // Obtain the cone direction
524 const Eigen::Vector3f coeff(model_coefficients[3], model_coefficients[4], model_coefficients[5]);
525
526 double angle_diff = std::abs (getAngle3D (axis_, coeff));
527 angle_diff = (std::min) (angle_diff, M_PI - angle_diff);
528 // Check whether the current cone model satisfies our angle threshold criterion with respect to the given axis
529 if (angle_diff > eps_angle_)
530 {
531 PCL_DEBUG ("[pcl::SampleConsensusModelCone::isModelValid] Angle between cone direction and given axis is too large.\n");
532 return (false);
533 }
534 }
535
536 if (model_coefficients[6] != -std::numeric_limits<double>::max() && model_coefficients[6] < min_angle_)
537 {
538 PCL_DEBUG ("[pcl::SampleConsensusModelCone::isModelValid] The opening angle is too small: should be larger than %g, but is %g.\n",
539 min_angle_, model_coefficients[6]);
540 return (false);
541 }
542 if (model_coefficients[6] != std::numeric_limits<double>::max() && model_coefficients[6] > max_angle_)
543 {
544 PCL_DEBUG ("[pcl::SampleConsensusModelCone::isModelValid] The opening angle is too big: should be smaller than %g, but is %g.\n",
545 max_angle_, model_coefficients[6]);
546 return (false);
547 }
548
549 return (true);
550}
551
552#define PCL_INSTANTIATE_SampleConsensusModelCone(PointT, PointNT) template class PCL_EXPORTS pcl::SampleConsensusModelCone<PointT, PointNT>;
553
554#endif // PCL_SAMPLE_CONSENSUS_IMPL_SAC_MODEL_CONE_H_
555
void optimizeModelCoefficients(const Indices &inliers, const Eigen::VectorXf &model_coefficients, Eigen::VectorXf &optimized_coefficients) const override
Recompute the cone coefficients using the given inlier set and return them to the user.
void projectPoints(const Indices &inliers, const Eigen::VectorXf &model_coefficients, PointCloud &projected_points, bool copy_data_fields=true) const override
Create a new point cloud with inliers projected onto the cone model.
void getDistancesToModel(const Eigen::VectorXf &model_coefficients, std::vector< double > &distances) const override
Compute all distances from the cloud data to a given cone model.
void selectWithinDistance(const Eigen::VectorXf &model_coefficients, const double threshold, Indices &inliers) override
Select all the points which respect the given model coefficients as inliers.
bool isSampleGood(const Indices &samples) const override
Check if a sample of indices results in a good sample of points indices.
bool computeModelCoefficients(const Indices &samples, Eigen::VectorXf &model_coefficients) const override
Check whether the given index samples can form a valid cone model, compute the model coefficients fro...
bool isModelValid(const Eigen::VectorXf &model_coefficients) const override
Check whether a model is valid given the user constraints.
double pointToAxisDistance(const Eigen::Vector4f &pt, const Eigen::VectorXf &model_coefficients) const
Get the distance from a point to a line (represented by a point and a direction)
bool doSamplesVerifyModel(const std::set< index_t > &indices, const Eigen::VectorXf &model_coefficients, const double threshold) const override
Verify whether a subset of indices verifies the given cone model coefficients.
typename SampleConsensusModel< PointT >::PointCloud PointCloud
std::size_t countWithinDistance(const Eigen::VectorXf &model_coefficients, const double threshold) const override
Count all the points which respect the given model coefficients as inliers.
SampleConsensusModel represents the base model class.
Definition sac_model.h:70
Define standard C methods and C++ classes that are common to all methods.
double getAngle3D(const Eigen::Vector4f &v1, const Eigen::Vector4f &v2, const bool in_degree=false)
Compute the smallest angle between two 3D vectors in radians (default) or degree.
Definition common.hpp:47
double sqrPointToLineDistance(const Eigen::Vector4f &pt, const Eigen::Vector4f &line_pt, const Eigen::Vector4f &line_dir)
Get the square distance from a point to a line (represented by a point and a direction)
Definition distances.h:75
Eigen::Map< Eigen::Vector4f, Eigen::Aligned > Vector4fMap
const Eigen::Map< const Eigen::Vector4f, Eigen::Aligned > Vector4fMapConst
IndicesAllocator<> Indices
Type used for indices in PCL.
Definition types.h:133
#define M_PI
Definition pcl_macros.h:201