from sfepy.discrete.fem import FEDomain
import scipy.sparse as sps
import numpy as nm
from sfepy.base.compat import factorial
from sfepy.base.base import output
from numpy.core import intc
from numpy.linalg import lapack_lite
nel, nnd = el.shape
if nnd > 4:
q2t = nm.array([[0, 2, 3, 6],
[0, 3, 7, 6],
[0, 7, 4, 6],
[0, 5, 6, 4],
[1, 5, 6, 0],
[1, 6, 2, 0]])
else:
q2t = nm.array([[0, 1, 2],
[0, 2, 3]])
ns, nn = q2t.shape
nel *= ns
out = nm.zeros((nel, nn), dtype=nm.int32);
for ii in range(ns):
idxs = nm.arange(ii, nel, ns)
out[idxs,:] = el[:, q2t[ii,:]]
return nm.ascontiguousarray(out)
[docs]def smooth_mesh(mesh, n_iter=4, lam=0.6307, mu=-0.6347,
weights=None, bconstr=True,
volume_corr=False):
"""
FE mesh smoothing.
Based on:
[1] Steven K. Boyd, Ralph Muller, Smooth surface meshing for automated
finite element model generation from 3D image data, Journal of
Biomechanics, Volume 39, Issue 7, 2006, Pages 1287-1295,
ISSN 0021-9290, 10.1016/j.jbiomech.2005.03.006.
(http://www.sciencedirect.com/science/article/pii/S0021929005001442)
Parameters
----------
mesh : mesh
FE mesh.
n_iter : integer, optional
Number of iteration steps.
lam : float, optional
Smoothing factor, see [1].
mu : float, optional
Unshrinking factor, see [1].
weights : array, optional
Edge weights, see [1].
bconstr: logical, optional
Boundary constraints, if True only surface smoothing performed.
volume_corr: logical, optional
Correct volume after smoothing process.
Returns
-------
coors : array
Coordinates of mesh nodes.
"""
def laplacian(coors, weights):
n_nod = coors.shape[0]
displ = (weights - sps.identity(n_nod)) * coors
return displ
def taubin(coors0, weights, lam, mu, n_iter):
coors = coors0.copy()
for ii in range(n_iter):
displ = laplacian(coors, weights)
if nm.mod(ii, 2) == 0:
coors += lam * displ
else:
coors += mu * displ
return coors
def get_volume(el, nd):
from sfepy.linalg.utils import dets_fast
dim = nd.shape[1]
nnd = el.shape[1]
etype = '%d_%d' % (dim, nnd)
if etype == '2_4' or etype == '3_8':
el = elems_q2t(el)
nel = el.shape[0]
#bc = nm.zeros((dim, ), dtype=nm.double)
mul = 1.0 / factorial(dim)
if dim == 3:
mul *= -1.0
mtx = nm.ones((nel, dim + 1, dim + 1), dtype=nm.double)
mtx[:,:,:-1] = nd[el,:]
vols = mul * dets_fast(mtx.copy())
vol = vols.sum()
bc = nm.dot(vols, mtx.sum(1)[:,:-1] / nnd)
bc /= vol
return vol, bc
import time
output('smoothing...')
tt = time.clock()
if weights is None:
n_nod = mesh.n_nod
domain = FEDomain('mesh', mesh)
cmesh = domain.cmesh
# initiate all vertices as inner - hierarchy = 2
node_group = nm.ones((n_nod,), dtype=nm.int16) * 2
# boundary vertices - set hierarchy = 4
if bconstr:
# get "vertices of surface"
facets = cmesh.get_surface_facets()
f_verts = cmesh.get_incident(0, facets, cmesh.dim - 1)
node_group[f_verts] = 4
# generate costs matrix
e_verts = cmesh.get_conn(1, 0).indices
fc1, fc2 = e_verts[0::2], e_verts[1::2]
idxs = nm.where(node_group[fc2] >= node_group[fc1])
rows1 = fc1[idxs]
cols1 = fc2[idxs]
idxs = nm.where(node_group[fc1] >= node_group[fc2])
rows2 = fc2[idxs]
cols2 = fc1[idxs]
crows = nm.concatenate((rows1, rows2))
ccols = nm.concatenate((cols1, cols2))
costs = sps.coo_matrix((nm.ones_like(crows), (crows, ccols)),
shape=(n_nod, n_nod),
dtype=nm.double)
# generate weights matrix
idxs = range(n_nod)
aux = sps.coo_matrix((1.0 / nm.asarray(costs.sum(1)).squeeze(),
(idxs, idxs)),
shape=(n_nod, n_nod),
dtype=nm.double)
#aux.setdiag(1.0 / costs.sum(1))
weights = (aux.tocsc() * costs.tocsc()).tocsr()
coors = taubin(mesh.coors, weights, lam, mu, n_iter)
output('...done in %.2f s' % (time.clock() - tt))
if volume_corr:
output('rescaling...')
volume0, bc = get_volume(mesh.conns[0], mesh.coors)
volume, _ = get_volume(mesh.conns[0], coors)
scale = volume0 / volume
output('scale factor: %.2f' % scale)
coors = (coors - bc) * scale + bc
output('...done in %.2f s' % (time.clock() - tt))
return coors