Table of all terms.ΒΆ
name/class arguments definition

dw_adj_convect1

AdjConvect1Term

<virtual>, <state>, <parameter>

\int_{\Omega} ((\ul{v} \cdot \nabla) \ul{u}) \cdot \ul{w}

dw_adj_convect2

AdjConvect2Term

<virtual>, <state>, <parameter>

\int_{\Omega} ((\ul{u} \cdot \nabla) \ul{v}) \cdot \ul{w}

dw_adj_div_grad

AdjDivGradTerm

<material_1>, <material_2>, <virtual>, <parameter>

w \delta_{u} \Psi(\ul{u}) \circ \ul{v}

dw_bc_newton

BCNewtonTerm

<material_1>, <material_2>, <virtual>, <state>

\int_{\Gamma} \alpha q (p - p_{\rm outer})

dw_biot

BiotTerm

<material>, <virtual>, <state>

<material>, <state>, <virtual>

<material>, <parameter_v>, <parameter_s>

\int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) \mbox{ , } \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u})

dw_biot_eth

BiotETHTerm

<ts>, <material_0>, <material_1>, <virtual>, <state>

<ts>, <material_0>, <material_1>, <state>, <virtual>

\begin{array}{l} \int_{\Omega} \left [\int_0^t \alpha_{ij}(t-\tau)\,p(\tau)) \difd{\tau} \right]\,e_{ij}(\ul{v}) \mbox{ ,} \\ \int_{\Omega} \left [\int_0^t \alpha_{ij}(t-\tau) e_{kl}(\ul{u}(\tau)) \difd{\tau} \right] q \end{array}

ev_biot_stress

BiotStressTerm

<material>, <parameter>

- \int_{\Omega} \alpha_{ij} \bar{p}

\mbox{vector for } K \from \Ical_h: - \int_{T_K} \alpha_{ij} \bar{p} / \int_{T_K} 1

- \alpha_{ij} \bar{p}|_{qp}

dw_biot_th

BiotTHTerm

<ts>, <material>, <virtual>, <state>

<ts>, <material>, <state>, <virtual>

\begin{array}{l} \int_{\Omega} \left [\int_0^t \alpha_{ij}(t-\tau)\,p(\tau)) \difd{\tau} \right]\,e_{ij}(\ul{v}) \mbox{ ,} \\ \int_{\Omega} \left [\int_0^t \alpha_{ij}(t-\tau) e_{kl}(\ul{u}(\tau)) \difd{\tau} \right] q \end{array}

ev_cauchy_strain

CauchyStrainTerm

<parameter>

\int_{\Omega} \ull{e}(\ul{w})

\mbox{vector for } K \from \Ical_h: \int_{T_K} \ull{e}(\ul{w}) / \int_{T_K} 1

\ull{e}(\ul{w})|_{qp}

ev_cauchy_strain_s

CauchyStrainSTerm

<parameter>

\int_{\Gamma} \ull{e}(\ul{w})

\mbox{vector for } K \from \Ical_h: \int_{T_K} \ull{e}(\ul{w}) / \int_{T_K} 1

\ull{e}(\ul{w})|_{qp}

ev_cauchy_stress

CauchyStressTerm

<material>, <parameter>

\int_{\Omega} D_{ijkl} e_{kl}(\ul{w})

\mbox{vector for } K \from \Ical_h: \int_{T_K} D_{ijkl} e_{kl}(\ul{w}) / \int_{T_K} 1

D_{ijkl} e_{kl}(\ul{w})|_{qp}

ev_cauchy_stress_eth

CauchyStressETHTerm

<ts>, <material_0>, <material_1>, <parameter>

\int_{\Omega} \int_0^t \Hcal_{ijkl}(t-\tau)\,e_{kl}(\ul{w}(\tau)) \difd{\tau}

\mbox{vector for } K \from \Ical_h: \int_{T_K} \int_0^t \Hcal_{ijkl}(t-\tau)\,e_{kl}(\ul{w}(\tau)) \difd{\tau} / \int_{T_K} 1

\int_0^t \Hcal_{ijkl}(t-\tau)\,e_{kl}(\ul{w}(\tau)) \difd{\tau}|_{qp}

ev_cauchy_stress_th

CauchyStressTHTerm

<ts>, <material>, <parameter>

\int_{\Omega} \int_0^t \Hcal_{ijkl}(t-\tau)\,e_{kl}(\ul{w}(\tau)) \difd{\tau}

\mbox{vector for } K \from \Ical_h: \int_{T_K} \int_0^t \Hcal_{ijkl}(t-\tau)\,e_{kl}(\ul{w}(\tau)) \difd{\tau} / \int_{T_K} 1

\int_0^t \Hcal_{ijkl}(t-\tau)\,e_{kl}(\ul{w}(\tau)) \difd{\tau}|_{qp}

dw_contact_plane

ContactPlaneTerm

<material_f>, <material_n>, <material_a>, <material_b>, <virtual>, <state>

\int_{\Gamma} \ul{v} \cdot f(d(\ul{u})) \ul{n}

dw_contact_sphere

ContactSphereTerm

<material_f>, <material_c>, <material_r>, <virtual>, <state>

\int_{\Gamma} \ul{v} \cdot f(d(\ul{u})) \ul{n}(\ul{u})

dw_convect

ConvectTerm

<virtual>, <state>

\int_{\Omega} ((\ul{u} \cdot \nabla) \ul{u}) \cdot \ul{v}

dw_convect_v_grad_s

ConvectVGradSTerm

<virtual>, <state_v>, <state_s>

\int_{\Omega} q (\ul{u} \cdot \nabla p)

ev_def_grad

DeformationGradientTerm

<parameter>

\ull{F} = \pdiff{\ul{x}}{\ul{X}}|_{qp} = \ull{I} + \pdiff{\ul{u}}{\ul{X}}|_{qp} \;, \\ \ul{x} = \ul{X} + \ul{u} \;, J = \det{(\ull{F})}

dw_diffusion

DiffusionTerm

<material>, <virtual>, <state>

<material>, <parameter_1>, <parameter_2>

\int_{\Omega} K_{ij} \nabla_i q \nabla_j p \mbox{ , } \int_{\Omega} K_{ij} \nabla_i \bar{p} \nabla_j r

dw_diffusion_coupling

DiffusionCoupling

<material>, <virtual>, <state>

<material>, <state>, <virtual>

<material>, <parameter_1>, <parameter_2>

\int_{\Omega} p K_{j} \nabla_j q

dw_diffusion_r

DiffusionRTerm

<material>, <virtual>

\int_{\Omega} K_{j} \nabla_j q

d_diffusion_sa

DiffusionSATerm

<material>, <parameter_q>, <parameter_p>, <parameter_v>

\int_{\Omega} \left[ (\dvg \ul{\Vcal}) K_{ij} \nabla_i q\, \nabla_j p - K_{ij} (\nabla_j \ul{\Vcal} \nabla q) \nabla_i p - K_{ij} \nabla_j q (\nabla_i \ul{\Vcal} \nabla p)\right]

ev_diffusion_velocity

DiffusionVelocityTerm

<material>, <parameter>

- \int_{\Omega} K_{ij} \nabla_j \bar{p}

\mbox{vector for } K \from \Ical_h: - \int_{T_K} K_{ij} \nabla_j \bar{p} / \int_{T_K} 1

- K_{ij} \nabla_j \bar{p}

ev_div

DivTerm

<parameter>

\int_{\Omega} \nabla \cdot \ul{u}

\mbox{vector for } K \from \Ical_h: \int_{T_K} \nabla \cdot \ul{u} / \int_{T_K} 1

(\nabla \cdot \ul{u})|_{qp}

dw_div

DivOperatorTerm

<opt_material>, <virtual>

\int_{\Omega} \nabla \cdot \ul{v} \mbox { or } \int_{\Omega} c \nabla \cdot \ul{v}

dw_div_grad

DivGradTerm

<opt_material>, <virtual>, <state>

<opt_material>, <parameter_1>, <parameter_2>

\int_{\Omega} \nu\ \nabla \ul{v} : \nabla \ul{u} \mbox{ , } \int_{\Omega} \nu\ \nabla \ul{u} : \nabla \ul{w} \\ \int_{\Omega} \nabla \ul{v} : \nabla \ul{u} \mbox{ , } \int_{\Omega} \nabla \ul{u} : \nabla \ul{w}

dw_electric_source

ElectricSourceTerm

<material>, <virtual>, <parameter>

\int_{\Omega} c s (\nabla \phi)^2

ev_grad

GradTerm

<parameter>

\int_{\Omega} \nabla p \mbox{ or } \int_{\Omega} \nabla \ul{w}

\mbox{vector for } K \from \Ical_h: \int_{T_K} \nabla p / \int_{T_K} 1 \mbox{ or } \int_{T_K} \nabla \ul{w} / \int_{T_K} 1

(\nabla p)|_{qp} \mbox{ or } \nabla \ul{w}|_{qp}

ev_integrate_mat

IntegrateMatTerm

<material>, <parameter>

\int_\Omega m

\mbox{vector for } K \from \Ical_h: \int_{T_K} m / \int_{T_K} 1

m|_{qp}

dw_jump

SurfaceJumpTerm

<opt_material>, <virtual>, <state_1>, <state_2>

\int_{\Gamma} c\, q (p_1 - p_2)

dw_laplace

LaplaceTerm

<opt_material>, <virtual>, <state>

<opt_material>, <parameter_1>, <parameter_2>

\int_{\Omega} c \nabla q \cdot \nabla p \mbox{ , } \int_{\Omega} c \nabla \bar{p} \cdot \nabla r

dw_lin_convect

LinearConvectTerm

<virtual>, <parameter>, <state>

\int_{\Omega} ((\ul{b} \cdot \nabla) \ul{u}) \cdot \ul{v}

((\ul{b} \cdot \nabla) \ul{u})|_{qp}

dw_lin_elastic

LinearElasticTerm

<material>, <virtual>, <state>

<material>, <parameter_1>, <parameter_2>

\int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u})

dw_lin_elastic_eth

LinearElasticETHTerm

<ts>, <material_0>, <material_1>, <virtual>, <state>

\int_{\Omega} \left [\int_0^t \Hcal_{ijkl}(t-\tau)\,e_{kl}(\ul{u}(\tau)) \difd{\tau} \right]\,e_{ij}(\ul{v})

dw_lin_elastic_iso

LinearElasticIsotropicTerm

<material_1>, <material_2>, <virtual>, <state>

\int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) \mbox{ with } D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl}

dw_lin_elastic_th

LinearElasticTHTerm

<ts>, <material>, <virtual>, <state>

\int_{\Omega} \left [\int_0^t \Hcal_{ijkl}(t-\tau)\,e_{kl}(\ul{u}(\tau)) \difd{\tau} \right]\,e_{ij}(\ul{v})

dw_lin_prestress

LinearPrestressTerm

<material>, <virtual>

<material>, <parameter>

\int_{\Omega} \sigma_{ij} e_{ij}(\ul{v})

dw_lin_strain_fib

LinearStrainFiberTerm

<material_1>, <material_2>, <virtual>

\int_{\Omega} D_{ijkl} e_{ij}(\ul{v}) \left(d_k d_l\right)

dw_new_diffusion

NewDiffusionTerm

<material>, <virtual>, <state>  

dw_new_lin_elastic

NewLinearElasticTerm

<material>, <virtual>, <state>  

dw_new_mass

NewMassTerm

<virtual>, <state>  

dw_new_mass_scalar

NewMassScalarTerm

<virtual>, <state>  

dw_non_penetration

NonPenetrationTerm

<opt_material>, <virtual>, <state>

<opt_material>, <state>, <virtual>

\int_{\Gamma} c \lambda \ul{n} \cdot \ul{v} \mbox{ , } \int_{\Gamma} c \hat\lambda \ul{n} \cdot \ul{u} \\ \int_{\Gamma} \lambda \ul{n} \cdot \ul{v} \mbox{ , } \int_{\Gamma} \hat\lambda \ul{n} \cdot \ul{u}

d_of_ns_surf_min_d_press

NSOFSurfMinDPressTerm

<material_1>, <material_2>, <parameter>

\delta \Psi(p) = \delta \left( \int_{\Gamma_{in}}p - \int_{\Gamma_{out}}bpress \right)

dw_of_ns_surf_min_d_press_diff

NSOFSurfMinDPressDiffTerm

<material>, <virtual>

w \delta_{p} \Psi(p) \circ q

dw_piezo_coupling

PiezoCouplingTerm

<material>, <virtual>, <state>

<material>, <state>, <virtual>

<material>, <parameter_v>, <parameter_s>

\int_{\Omega} g_{kij}\ e_{ij}(\ul{v}) \nabla_k p \mbox{ , } \int_{\Omega} g_{kij}\ e_{ij}(\ul{u}) \nabla_k q

dw_point_load

ConcentratedPointLoadTerm

<material>, <virtual>

\ul{f}^i = \ul{\bar f}^i \quad \forall \mbox{ FE node } i \mbox{ in a region }

dw_point_lspring

LinearPointSpringTerm

<material>, <virtual>, <state>

\ul{f}^i = -k \ul{u}^i \quad \forall \mbox{ FE node } i \mbox{ in a region }

dw_s_dot_grad_i_s

ScalarDotGradIScalarTerm

<material>, <virtual>, <state>

Z^i = \int_{\Omega} q \nabla_i p

d_sd_convect

SDConvectTerm

<parameter_u>, <parameter_w>, <parameter_mesh_velocity>

\int_{\Omega_D} [ u_k \pdiff{u_i}{x_k} w_i (\nabla \cdot \Vcal) - u_k \pdiff{\Vcal_j}{x_k} \pdiff{u_i}{x_j} w_i ]

d_sd_div

SDDivTerm

<parameter_u>, <parameter_p>, <parameter_mesh_velocity>

\int_{\Omega_D} p [ (\nabla \cdot \ul{w}) (\nabla \cdot \ul{\Vcal}) - \pdiff{\Vcal_k}{x_i} \pdiff{w_i}{x_k} ]

d_sd_div_grad

SDDivGradTerm

<material_1>, <material_2>, <parameter_u>, <parameter_w>, <parameter_mesh_velocity>

w \nu \int_{\Omega_D} [ \pdiff{u_i}{x_k} \pdiff{w_i}{x_k} (\nabla \cdot \ul{\Vcal}) - \pdiff{\Vcal_j}{x_k} \pdiff{u_i}{x_j} \pdiff{w_i}{x_k} - \pdiff{u_i}{x_k} \pdiff{\Vcal_l}{x_k} \pdiff{w_i}{x_k} ]

d_sd_lin_elastic

SDLinearElasticTerm

<material>, <parameter_w>, <parameter_u>, <parameter_mesh_velocity>

\int_{\Omega} \hat{D}_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u})

\hat{D}_{ijkl} = D_{ijkl}(\nabla \cdot \ul{\Vcal}) - D_{ijkq}{\partial \Vcal_l \over \partial x_q} - D_{iqkl}{\partial \Vcal_j \over \partial x_q}

d_sd_st_grad_div

SDGradDivStabilizationTerm

<material>, <parameter_u>, <parameter_w>, <parameter_mesh_velocity>

\gamma \int_{\Omega_D} [ (\nabla \cdot \ul{u}) (\nabla \cdot \ul{w}) (\nabla \cdot \ul{\Vcal}) - \pdiff{u_i}{x_k} \pdiff{\Vcal_k}{x_i} (\nabla \cdot \ul{w}) - (\nabla \cdot \ul{u}) \pdiff{w_i}{x_k} \pdiff{\Vcal_k}{x_i} ]

d_sd_st_pspg_c

SDPSPGCStabilizationTerm

<material>, <parameter_b>, <parameter_u>, <parameter_r>, <parameter_mesh_velocity>

\sum_{K \in \Ical_h}\int_{T_K} \delta_K\ [ \pdiff{r}{x_i} (\ul{b} \cdot \nabla u_i) (\nabla \cdot \Vcal) - \pdiff{r}{x_k} \pdiff{\Vcal_k}{x_i} (\ul{b} \cdot \nabla u_i) - \pdiff{r}{x_k} (\ul{b} \cdot \nabla \Vcal_k) \pdiff{u_i}{x_k} ]

d_sd_st_pspg_p

SDPSPGPStabilizationTerm

<material>, <parameter_r>, <parameter_p>, <parameter_mesh_velocity>

\sum_{K \in \Ical_h}\int_{T_K} \tau_K\ [ (\nabla r \cdot \nabla p) (\nabla \cdot \Vcal) - \pdiff{r}{x_k} (\nabla \Vcal_k \cdot \nabla p) - (\nabla r \cdot \nabla \Vcal_k) \pdiff{p}{x_k} ]

d_sd_st_supg_c

SDSUPGCStabilizationTerm

<material>, <parameter_b>, <parameter_u>, <parameter_w>, <parameter_mesh_velocity>

\sum_{K \in \Ical_h}\int_{T_K} \delta_K\ [ (\ul{b} \cdot \nabla u_k) (\ul{b} \cdot \nabla w_k) (\nabla \cdot \Vcal) - (\ul{b} \cdot \nabla \Vcal_i) \pdiff{u_k}{x_i} (\ul{b} \cdot \nabla w_k) - (\ul{u} \cdot \nabla u_k) (\ul{b} \cdot \nabla \Vcal_i) \pdiff{w_k}{x_i} ]

d_sd_surface_integrate

SDSufaceIntegrateTerm

<parameter>, <parameter_mesh_velocity>

\int_{\Gamma} p \nabla \cdot \ul{\Vcal}

d_sd_volume_dot

SDDotVolumeTerm

<parameter_1>, <parameter_2>, <parameter_mesh_velocity>

\int_{\Omega_D} p q (\nabla \cdot \ul{\Vcal}) \mbox{ , } \int_{\Omega_D} (\ul{u} \cdot \ul{w}) (\nabla \cdot \ul{\Vcal})

dw_st_adj1_supg_p

SUPGPAdj1StabilizationTerm

<material>, <virtual>, <state>, <parameter>

\sum_{K \in \Ical_h}\int_{T_K} \delta_K\ \nabla p (\ul{v} \cdot \nabla \ul{w})

dw_st_adj2_supg_p

SUPGPAdj2StabilizationTerm

<material>, <virtual>, <parameter>, <state>

\sum_{K \in \Ical_h}\int_{T_K} \tau_K\ \nabla r (\ul{v} \cdot \nabla \ul{u})

dw_st_adj_supg_c

SUPGCAdjStabilizationTerm

<material>, <virtual>, <parameter>, <state>

\sum_{K \in \Ical_h}\int_{T_K} \delta_K\ [ ((\ul{v} \cdot \nabla) \ul{u}) ((\ul{u} \cdot \nabla) \ul{w}) + ((\ul{u} \cdot \nabla) \ul{u}) ((\ul{v} \cdot \nabla) \ul{w}) ]

dw_st_grad_div

GradDivStabilizationTerm

<material>, <virtual>, <state>

\gamma \int_{\Omega} (\nabla\cdot\ul{u}) \cdot (\nabla\cdot\ul{v})

dw_st_pspg_c

PSPGCStabilizationTerm

<material>, <virtual>, <parameter>, <state>

\sum_{K \in \Ical_h}\int_{T_K} \tau_K\ ((\ul{b} \cdot \nabla) \ul{u}) \cdot \nabla q

dw_st_pspg_p

PSPGPStabilizationTerm

<opt_material>, <virtual>, <state>

<opt_material>, <parameter_1>, <parameter_2>

\sum_{K \in \Ical_h}\int_{T_K} \tau_K\ \nabla p \cdot \nabla q

dw_st_supg_c

SUPGCStabilizationTerm

<material>, <virtual>, <parameter>, <state>

\sum_{K \in \Ical_h}\int_{T_K} \delta_K\ ((\ul{b} \cdot \nabla) \ul{u})\cdot ((\ul{b} \cdot \nabla) \ul{v})

dw_st_supg_p

SUPGPStabilizationTerm

<material>, <virtual>, <parameter>, <state>

\sum_{K \in \Ical_h}\int_{T_K} \delta_K\ \nabla p\cdot ((\ul{b} \cdot \nabla) \ul{v})

dw_stokes

StokesTerm

<opt_material>, <virtual>, <state>

<opt_material>, <state>, <virtual>

<opt_material>, <parameter_v>, <parameter_s>

\int_{\Omega} p\ \nabla \cdot \ul{v} \mbox{ , } \int_{\Omega} q\ \nabla \cdot \ul{u} \mbox{ or } \int_{\Omega} c\ p\ \nabla \cdot \ul{v} \mbox{ , } \int_{\Omega} c\ q\ \nabla \cdot \ul{u}

d_sum_vals

SumNodalValuesTerm

<parameter>  

d_surface

SurfaceTerm

<parameter>

\int_\Gamma 1

dw_surface_dot

DotProductSurfaceTerm

<opt_material>, <virtual>, <state>

<opt_material>, <parameter_1>, <parameter_2>

\int_\Gamma q p \mbox{ , } \int_\Gamma \ul{v} \cdot \ul{u} \mbox{ , } \int_\Gamma \ul{v} \cdot \ul{n} p \mbox{ , } \int_\Gamma q \ul{n} \cdot \ul{u} \mbox{ , } \int_\Gamma p r \mbox{ , } \int_\Gamma \ul{u} \cdot \ul{w} \mbox{ , } \int_\Gamma \ul{w} \cdot \ul{n} p \\ \int_\Gamma c q p \mbox{ , } \int_\Gamma c \ul{v} \cdot \ul{u} \mbox{ , } \int_\Gamma c p r \mbox{ , } \int_\Gamma c \ul{u} \cdot \ul{w} \\ \int_\Gamma \ul{v} \cdot \ull{M} \cdot \ul{u} \mbox{ , } \int_\Gamma \ul{u} \cdot \ull{M} \cdot \ul{w}

dw_surface_flux

SurfaceFluxOperatorTerm

<opt_material>, <virtual>, <state>

\int_{\Gamma} q \ul{n} \cdot \ull{K} \cdot \nabla p

d_surface_flux

SurfaceFluxTerm

<material>, <parameter>

\int_{\Gamma} \ul{n} \cdot K_{ij} \nabla_j \bar{p}

\mbox{vector for } K \from \Ical_h: \int_{T_K} \ul{n} \cdot K_{ij} \nabla_j \bar{p}\ / \int_{T_K} 1

\mbox{vector for } K \from \Ical_h: \int_{T_K} \ul{n} \cdot K_{ij} \nabla_j \bar{p}

dw_surface_integrate

IntegrateSurfaceOperatorTerm

<opt_material>, <virtual>

\int_{\Gamma} q \mbox{ or } \int_\Gamma c q

ev_surface_integrate

IntegrateSurfaceTerm

<opt_material>, <parameter>

\int_\Gamma y \mbox{ , } \int_\Gamma \ul{y} \mbox{ , } \int_\Gamma \ul{y} \cdot \ul{n} \\ \int_\Gamma c y \mbox{ , } \int_\Gamma c \ul{y} \mbox{ , } \int_\Gamma c \ul{y} \cdot \ul{n} \mbox{ flux }

\mbox{vector for } K \from \Ical_h: \int_{T_K} y / \int_{T_K} 1 \mbox{ , } \int_{T_K} \ul{y} / \int_{T_K} 1 \mbox{ , } \int_{T_K} (\ul{y} \cdot \ul{n}) / \int_{T_K} 1 \\ \mbox{vector for } K \from \Ical_h: \int_{T_K} c y / \int_{T_K} 1 \mbox{ , } \int_{T_K} c \ul{y} / \int_{T_K} 1 \mbox{ , } \int_{T_K} (c \ul{y} \cdot \ul{n}) / \int_{T_K} 1

y|_{qp} \mbox{ , } \ul{y}|_{qp} \mbox{ , } (\ul{y} \cdot \ul{n})|_{qp} \mbox{ flux } \\ c y|_{qp} \mbox{ , } c \ul{y}|_{qp} \mbox{ , } (c \ul{y} \cdot \ul{n})|_{qp} \mbox{ flux }

dw_surface_laplace

SurfaceLaplaceLayerTerm

<material>, <virtual>, <state>

<material>, <parameter_2>, <parameter_1>

\int_{\Gamma} c \partial_\alpha \ul{q}\,\partial_\alpha \ul{p}, \alpha = 1,\dots,N-1

dw_surface_lcouple

SurfaceCoupleLayerTerm

<material>, <virtual>, <state>

<material>, <state>, <virtual>

<material>, <parameter_1>, <parameter_2>

\int_{\Gamma} c q\,\partial_\alpha p, \int_{\Gamma} c \partial_\alpha p\, q, \int_{\Gamma} c \partial_\alpha r\, s,\alpha = 1,\dots,N-1

dw_surface_ltr

LinearTractionTerm

<opt_material>, <virtual>

<opt_material>, <parameter>

\int_{\Gamma} \ul{v} \cdot \ull{\sigma} \cdot \ul{n}, \int_{\Gamma} \ul{v} \cdot \ul{n},

di_surface_moment

SurfaceMomentTerm

<parameter>, <shift>

\int_{\Gamma} \ul{n} (\ul{x} - \ul{x}_0)

dw_surface_ndot

SufaceNormalDotTerm

<material>, <virtual>

<material>, <parameter>

\int_{\Gamma} q \ul{c} \cdot \ul{n}

dw_tl_bulk_active

BulkActiveTLTerm

<material>, <virtual>, <state>

\int_{\Omega} S_{ij}(\ul{u}) \delta E_{ij}(\ul{u};\ul{v})

dw_tl_bulk_penalty

BulkPenaltyTLTerm

<material>, <virtual>, <state>

\int_{\Omega} S_{ij}(\ul{u}) \delta E_{ij}(\ul{u};\ul{v})

dw_tl_bulk_pressure

BulkPressureTLTerm

<virtual>, <state>, <state_p>

\int_{\Omega} S_{ij}(p) \delta E_{ij}(\ul{u};\ul{v})

dw_tl_diffusion

DiffusionTLTerm

<material_1>, <material_2>, <virtual>, <state>, <parameter>

\int_{\Omega} \ull{K}(\ul{u}^{(n-1)}) : \pdiff{q}{\ul{X}} \pdiff{p}{\ul{X}}

dw_tl_fib_a

FibresActiveTLTerm

<material_1>, <material_2>, <material_3>, <material_4>, <material_5>, <virtual>, <state>

\int_{\Omega} S_{ij}(\ul{u}) \delta E_{ij}(\ul{u};\ul{v})

dw_tl_he_mooney_rivlin

MooneyRivlinTLTerm

<material>, <virtual>, <state>

\int_{\Omega} S_{ij}(\ul{u}) \delta E_{ij}(\ul{u};\ul{v})

dw_tl_he_neohook

NeoHookeanTLTerm

<material>, <virtual>, <state>

\int_{\Omega} S_{ij}(\ul{u}) \delta E_{ij}(\ul{u};\ul{v})

dw_tl_membrane

TLMembraneTerm

<material_a1>, <material_a2>, <material_h0>, <virtual>, <state>  

d_tl_surface_flux

SurfaceFluxTLTerm

<material_1>, <material_2>, <parameter_1>, <parameter_2>

\int_{\Gamma} \ul{\nu} \cdot \ull{K}(\ul{u}^{(n-1)}) \pdiff{p}{\ul{X}}

dw_tl_surface_traction

SurfaceTractionTLTerm

<opt_material>, <virtual>, <state>

\int_{\Gamma} \ul{\nu} \cdot \ull{F}^{-1} \cdot \ull{\sigma} \cdot \ul{v} J

dw_tl_volume

VolumeTLTerm

<virtual>, <state>

\begin{array}{l} \int_{\Omega} q J(\ul{u}) \\ \mbox{volume mode: vector for } K \from \Ical_h: \int_{T_K} J(\ul{u}) \\ \mbox{rel\_volume mode: vector for } K \from \Ical_h: \int_{T_K} J(\ul{u}) / \int_{T_K} 1 \end{array}

d_tl_volume_surface

VolumeSurfaceTLTerm

<parameter>

1 / D \int_{\Gamma} \ul{\nu} \cdot \ull{F}^{-1} \cdot \ul{x} J

dw_ul_bulk_penalty

BulkPenaltyULTerm

<material>, <virtual>, <state>

\int_{\Omega} \mathcal{L}\tau_{ij}(\ul{u}) e_{ij}(\delta\ul{v})/J

dw_ul_bulk_pressure

BulkPressureULTerm

<virtual>, <state>, <state_p>

\int_{\Omega} \mathcal{L}\tau_{ij}(\ul{u}) e_{ij}(\delta\ul{v})/J

dw_ul_compressible

CompressibilityULTerm

<material>, <virtual>, <state>, <parameter_u>

\int_{\Omega} 1\over \gamma p \, q

dw_ul_he_mooney_rivlin

MooneyRivlinULTerm

<material>, <virtual>, <state>

\int_{\Omega} \mathcal{L}\tau_{ij}(\ul{u}) e_{ij}(\delta\ul{v})/J

dw_ul_he_neohook

NeoHookeanULTerm

<material>, <virtual>, <state>

\int_{\Omega} \mathcal{L}\tau_{ij}(\ul{u}) e_{ij}(\delta\ul{v})/J

dw_ul_volume

VolumeULTerm

<virtual>, <state>

\begin{array}{l} \int_{\Omega} q J(\ul{u}) \\ \mbox{volume mode: vector for } K \from \Ical_h: \int_{T_K} J(\ul{u}) \\ \mbox{rel\_volume mode: vector for } K \from \Ical_h: \int_{T_K} J(\ul{u}) / \int_{T_K} 1 \end{array}

dw_v_dot_grad_s

VectorDotGradScalarTerm

<opt_material>, <virtual>, <state>

<opt_material>, <state>, <virtual>

<opt_material>, <parameter_v>, <parameter_s>

\int_{\Omega} \ul{v} \cdot \nabla p \mbox{ , } \int_{\Omega} \ul{u} \cdot \nabla q \\ \int_{\Omega} c \ul{v} \cdot \nabla p \mbox{ , } \int_{\Omega} c \ul{u} \cdot \nabla q \\ \int_{\Omega} \ul{v} \cdot \ull{M} \cdot \nabla p \mbox{ , } \int_{\Omega} \ul{u} \cdot \ull{M} \cdot \nabla q

d_volume

VolumeTerm

<parameter>

\int_\Omega 1

dw_volume_dot

DotProductVolumeTerm

<opt_material>, <virtual>, <state>

<opt_material>, <parameter_1>, <parameter_2>

\int_\Omega q p \mbox{ , } \int_\Omega \ul{v} \cdot \ul{u} \mbox{ , } \int_\Omega p r \mbox{ , } \int_\Omega \ul{u} \cdot \ul{w} \\ \int_\Omega c q p \mbox{ , } \int_\Omega c \ul{v} \cdot \ul{u} \mbox{ , } \int_\Omega c p r \mbox{ , } \int_\Omega c \ul{u} \cdot \ul{w} \\ \int_\Omega \ul{v} \cdot \ull{M} \cdot \ul{u} \mbox{ , } \int_\Omega \ul{u} \cdot \ull{M} \cdot \ul{w}

dw_volume_dot_w_scalar_eth

DotSProductVolumeOperatorWETHTerm

<ts>, <material_0>, <material_1>, <virtual>, <state>

\int_\Omega \left [\int_0^t \Gcal(t-\tau) p(\tau) \difd{\tau} \right] q

dw_volume_dot_w_scalar_th

DotSProductVolumeOperatorWTHTerm

<ts>, <material>, <virtual>, <state>

\int_\Omega \left [\int_0^t \Gcal(t-\tau) p(\tau) \difd{\tau} \right] q

dw_volume_integrate

IntegrateVolumeOperatorTerm

<opt_material>, <virtual>

\int_\Omega q \mbox{ or } \int_\Omega c q

ev_volume_integrate

IntegrateVolumeTerm

<opt_material>, <parameter>

\int_\Omega y \mbox{ , } \int_\Omega \ul{y} \\ \int_\Omega c y \mbox{ , } \int_\Omega c \ul{y}

\mbox{vector for } K \from \Ical_h: \int_{T_K} y / \int_{T_K} 1 \mbox{ , } \int_{T_K} \ul{y} / \int_{T_K} 1 \\ \mbox{vector for } K \from \Ical_h: \int_{T_K} c y / \int_{T_K} 1 \mbox{ , } \int_{T_K} c \ul{y} / \int_{T_K} 1

y|_{qp} \mbox{ , } \ul{y}|_{qp} \\ c y|_{qp} \mbox{ , } c \ul{y}|_{qp}

dw_volume_lvf

LinearVolumeForceTerm

<material>, <virtual>

\int_{\Omega} \ul{f} \cdot \ul{v} \mbox{ or } \int_{\Omega} f q

d_volume_surface

VolumeSurfaceTerm

<parameter>

1 / D \int_\Gamma \ul{x} \cdot \ul{n}