Actual source code: test5.c

slepc-3.6.1 2015-09-03
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-2015, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.

  8:    SLEPc is free software: you can redistribute it and/or modify it under  the
  9:    terms of version 3 of the GNU Lesser General Public License as published by
 10:    the Free Software Foundation.

 12:    SLEPc  is  distributed in the hope that it will be useful, but WITHOUT  ANY
 13:    WARRANTY;  without even the implied warranty of MERCHANTABILITY or  FITNESS
 14:    FOR  A  PARTICULAR PURPOSE. See the GNU Lesser General Public  License  for
 15:    more details.

 17:    You  should have received a copy of the GNU Lesser General  Public  License
 18:    along with SLEPc. If not, see <http://www.gnu.org/licenses/>.
 19:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 20: */

 22: static char help[] = "Test BV operations with indefinite inner product.\n\n";

 24: #include <slepcbv.h>

 28: int main(int argc,char **argv)
 29: {
 31:   Vec            t,v;
 32:   Mat            B,M;
 33:   Vec            omega;
 34:   BV             X,Y;
 35:   PetscInt       i,j,n=10,k=5,Istart,Iend;
 36:   PetscScalar    alpha;
 37:   PetscReal      nrm;
 38:   PetscViewer    view;
 39:   PetscBool      verbose;

 41:   SlepcInitialize(&argc,&argv,(char*)0,help);
 42:   PetscOptionsGetInt(NULL,"-n",&n,NULL);
 43:   PetscOptionsGetInt(NULL,"-k",&k,NULL);
 44:   PetscOptionsHasName(NULL,"-verbose",&verbose);
 45:   PetscPrintf(PETSC_COMM_WORLD,"Test BV with indefinite inner product (n=%D, k=%D).\n",n,k);

 47:   /* Create inner product matrix (standard involutionary permutation) */
 48:   MatCreate(PETSC_COMM_WORLD,&B);
 49:   MatSetSizes(B,PETSC_DECIDE,PETSC_DECIDE,n,n);
 50:   MatSetFromOptions(B);
 51:   MatSetUp(B);
 52:   PetscObjectSetName((PetscObject)B,"B");

 54:   MatGetOwnershipRange(B,&Istart,&Iend);
 55:   for (i=Istart;i<Iend;i++) {
 56:     MatSetValue(B,i,n-i-1,1.0,INSERT_VALUES);
 57:   }
 58:   MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
 59:   MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);
 60:   MatCreateVecs(B,&t,NULL);

 62:   /* Create BV object X */
 63:   BVCreate(PETSC_COMM_WORLD,&X);
 64:   PetscObjectSetName((PetscObject)X,"X");
 65:   BVSetSizesFromVec(X,t,k);
 66:   BVSetFromOptions(X);
 67:   BVSetMatrix(X,B,PETSC_TRUE);

 69:   /* Set up viewer */
 70:   PetscViewerASCIIGetStdout(PETSC_COMM_WORLD,&view);
 71:   if (verbose) {
 72:     PetscViewerPushFormat(view,PETSC_VIEWER_ASCII_MATLAB);
 73:   }

 75:   /* Fill X entries */
 76:   for (j=0;j<k;j++) {
 77:     BVGetColumn(X,j,&v);
 78:     VecSet(v,-1.0);
 79:     for (i=0;i<4;i++) {
 80:       if (i+j<n) {
 81:         VecSetValue(v,i+j,(PetscScalar)(3*i+j-2),INSERT_VALUES);
 82:       }
 83:     }
 84:     VecAssemblyBegin(v);
 85:     VecAssemblyEnd(v);
 86:     BVRestoreColumn(X,j,&v);
 87:   }
 88:   if (verbose) {
 89:     MatView(B,view);
 90:     BVView(X,view);
 91:   }

 93:   /* Test BVNormColumn */
 94:   BVNormColumn(X,0,NORM_2,&nrm);
 95:   PetscPrintf(PETSC_COMM_WORLD,"B-Norm or X[0] = %g\n",(double)nrm);

 97:   /* Test BVOrthogonalizeColumn */
 98:   for (j=0;j<k;j++) {
 99:     BVOrthogonalizeColumn(X,j,NULL,&nrm,NULL);
100:     alpha = 1.0/nrm;
101:     BVScaleColumn(X,j,alpha);
102:   }
103:   if (verbose) {
104:     BVView(X,view);
105:   }

107:   /* Create a copy on Y */
108:   BVDuplicate(X,&Y);
109:   PetscObjectSetName((PetscObject)Y,"Y");
110:   BVCopy(X,Y);

112:   /* Check orthogonality */
113:   MatCreateSeqDense(PETSC_COMM_SELF,k,k,NULL,&M);
114:   BVDot(Y,Y,M);
115:   VecCreateSeq(PETSC_COMM_SELF,k,&omega);
116:   BVGetSignature(Y,omega);
117:   VecScale(omega,-1.0);
118:   MatDiagonalSet(M,omega,ADD_VALUES);
119:   VecDestroy(&omega);
120:   MatNorm(M,NORM_1,&nrm);
121:   if (nrm<100*PETSC_MACHINE_EPSILON) {
122:     PetscPrintf(PETSC_COMM_WORLD,"Level of orthogonality < 100*eps\n");
123:   } else {
124:     PetscPrintf(PETSC_COMM_WORLD,"Level of orthogonality: %g\n",(double)nrm);
125:   }

127:   BVDestroy(&X);
128:   BVDestroy(&Y);
129:   MatDestroy(&M);
130:   MatDestroy(&B);
131:   VecDestroy(&t);
132:   SlepcFinalize();
133:   return 0;
134: }